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Lecture #23 05/05/2015

23 Isogeny volcanoes

We now want to shift our focus away from elliptic curves over C and consider elliptic
curves E/k defined over any field k; in particular, finite fields k = Fp. In Lecture 21 we
noted (but did not prove) that the moduli interpretation of the modular polynomial X0(N)
as parameterizing cyclic isogenies of degree N is valid over any field. Thus we can use
the modular equation ΦN ∈ Z[X,Y ] to identify pairs of isogenous elliptic curves using j-
invariants in any field k. When k is not algebraically closed this determines the elliptic
curves involved only up to a twist, but for finite fields there are only two twists to consider

¯(assuming j = 0, 1728) and in many applications it suffices to work with k isomorphism
classes of elliptic curves defined over k, equivalently the set of j-invariants of elliptic curves
E/k, which by Theorem 14.12 is just the set k itself.

We are particularly interested in the case that N = ` is a prime different from the
characteristic of k. Every isogeny of degree ` is cyclic, since ` is prime, and for any fixed
j-invariant j1 := j(E1), the roots of the polynomial

φ`(Y ) = Φ`(j1, Y )

that lie in k are j-invariants of elliptic curves E2/k that are `-isogenous to E, meaning that
there exists an isogeny ϕ : E1 → E2 of degree `. This motivates the following definition.

Definition 23.1. The `-isogeny graph G`(k) is the directed graph with vertex set k and
edges (j1, j2) present with multiplicity equal to the multiplicity of j2 as a root of Φ`(j1, Y ).

As noted in Remark 21.5, if j1 = j(E1) and j2 = j(E2) are a pair of `-isogenous elliptic
curves, the ordered pair (j1, j2) does not uniquely determine an `-isogeny ϕ : E1 → E2; their
may be multiple `-isogenies from E1 to E2 that are inequivalent (with different kernels).
This is why it is important to count edges in G`(k) with multiplicity. The existence of the
dual isogeny guarantees that (j1, j2) is an edge in G`(k) if and only (j2, j1) is also an edge,
and provided that j1, j2 = 0, 1728 these edges have the same multiplicity.

Remark 23.2. The exceptions for j-invariants 0 = j(ρ) and 1728 = j(i) arise from the fact
that the corresponding elliptic curves y2 = x3 + B and y2 = x3 + Ax have automorphisms
ρ : (x, y) 7→ (ρx, y) and i : (x, y) 7→ (−x, iy), respectively, distinct from ±1 (here we are

¯using ρ and i both to denote elements of the endomorphism ring and roots of unity in k).
The automorphism −1 does not pose a problem because every elliptic curve has this auto-
morphism, so for any `-isogeny ϕ : E1 → E2 the isogeny ϕ ◦ [−1] = [−1] ◦ ϕ is isomorphic
to ϕ (it is a separable isogeny with the same kernel, equivalently, it is obtained by post-
composing ϕ with an isomorphism). But if E1 has j-invariant 0 but E2 does not then we
cannot write ϕ ◦ ρ = ρ ◦ϕ and the isogenies ϕ and ϕ ◦ ρ are truly distinct; their kernels are
two different subgroups of E[`]. However, the inequivalent isogenies ϕ,ϕ ◦ ρ, ϕ ◦ ρ2 all have
equivalent dual-isogenies: the isogeny ϕ̂ : E2 → E1 is equivalent to ρ̂ ◦ ϕ̂ and ρ̂2 ◦ ϕ since it
can be obtained by composing ϕ̂ : E2 → E1 with an automorphism of E1 (notice that the
three dual isogenies all do have the same kernel). In this situation the edge (j(E1), j(E2)
will have multiplicity 3 in G`(k) but the edge (j(E2), j(E1)) will have multiplicity 1. The
case where E1 has j-invariant 1728 but E2 does not is similar, except now (j(E1), j(E2) has
multiplicity 2.
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Our objective in this lecture is to gain a better understanding the structure of the graph
G`(k), at least in the case that k = Fq is a finite field. Recall from Lecture 14 that elliptic
curves over finite fields may be classified according to their endomorphism algebras and
are either ordinary (meaning End0(E) is an imaginary quadratic field) or supersingular
(meaning End0(E) is a quaternion algebra). Since the endomorphism algebra is preserved
by isogenies (Theorem 13.8), we know that G`(Fq) can be partitioned into ordinary and
supersingular components.1 Since most elliptic curves are ordinary, we will focus on the
ordinary components; you may explore the supersingular components on Problem Set 12.

23.1 Isogenies between elliptic curves with complex multiplication

Let E/k be an elliptic curve with CM by an order O of discriminant D in an imaginary
quadratic field K and let ` be prime not equal to the characteristic of k.2 We have in
mind the case where k is a finite field, but most of the theory applies more generally, so we
will work in this setting. As noted above, the endomorphism algebra End0(E) ' K is an
isogeny invariant, so if ϕ : E → E′ is an `-isogeny then E′ also has CM by an order O′ in
the imaginary quadratic field K. It is not necessarily the case that O′ and O are the same,
but the following theorem shows that they are closely related.

Theorem 23.3. Let E/k be an elliptic curve with CM by an order O in an imaginary
quadratic field K, and suppose that there exists an isogeny ϕ : E → E′ of prime degree `.
Then E′ has CM by an order O′ in K, and one of the following holds:

(i) O = O′, (ii) [O : O′] = `, (iii) [O′ : O] = `.

ˆProof. Let φ : E′ → E denote the dual isogeny For any τ ∈ End(E), the composition
ϕ ◦ τ ◦ ϕ̂ : E′ → E′ is an isogeny from E′ to itself, hence an element of End(E′). Conversely,
for any τ ′ ∈ End(E′), the composition ϕ̂ ◦ τ ′ ◦ ϕ : E

0
→ E is an element of End(E). Thus

the endomorphism algebras End (E) and End0(E′) are the same (as already noted), so E′

has CM by an order O′ in K. Furthermore, if O = [1, τ ] and O = [1, τ ′], then ϕ ◦ τ ◦ ϕ̂
corresponds to `τ ∈ O′, since ϕ ◦ ϕ̂ = `, and similarly, ϕ̂ ◦ τ ◦ ϕ corresponds to `τ ′ ∈ O.3

It follows that [1, `τ ] ⊆ O′ and [1, `τ ′] ⊆ O. We thus have

[1, `2τ ] ⊆ [1, `τ ′] ⊆ [1, τ ].

The index of [1, `2τ ] in [t, τ ] is `2, so the index of [1, `τ ′] in [1, τ ] must be 1, `, or `2. These
correspond to cases (iii), (i), and (ii) of the theorem, respectively.

Definition 23.4. We use the following terminology to distinguish the three possibilities for
the `-isogeny ϕ : E → E′ of Theorem 23.3:

(i) when O = O′ we say that ϕ is a horizontal,

(ii) when [O : O′] we say that ϕ is descending,

(iii) when [O′ : O] we say that ϕ is ascending.

We collectively refer to ascending and descending isogenies as vertical isogenies.

1In fact there is only one supersingular component, but we won’t prove this.
2Note that K and k are unrelated: k is the field over which the elliptic curve is defined, while K ' End0(E)

is the endomorphism algebra of the elliptic curve, which is by definition a Q-algebra, no matter what k is.
3By “correspond” we mean that they are identical as abstract elements of the field End0(E) ' K.
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Horizontal `-isogenies correspond to the CM action of a proper (invertible) O-ideal of
norm `. For elliptic curves over C we proved that each proper O-ideal a induces a separable
isogeny ϕa of degree Na with kernel

E[a] := {P ∈ ¯E(k) : α(P ) = 0 for all α ∈ a}.

The definition of E[a] makes sense over any field; the O-ideal a is a subset of End(E) ' O,
¯and each endomorphism α ∈ a corresponds to a rational map with coefficients in k that we

can apply to any point P ∈ ¯E(k). So long as Na is not divisible by the characteristic k, we
can define ϕa : E → E′ to be the separable isogeny with kernel E[a] given by Theorem 6.8,
which is unique up to isomorphism.

Let us now consider the case where Na = `. If we restrict ϕa : E → E′ to the finite
group E[a], we get a bijection whose image is the kernel of the dual isogeny ϕ̂a. The set

Iϕa(E[a]) := {α ∈ O′ : α(P ) = 0 for all P ∈ ϕa(E[a])}

is then a proper O′-ideal of norm `, which implies that O′ = O, and in fact Iker ϕ̂a = a, so
ϕ̂a : E′ → E is the same as the isogeny ϕa : E′ → E induced by a. Thus the CM action of
a proper O-ideal of norm ` corresponds to a horizontal `-isogeny.

Conversely, if ϕ : E → E′ is a horizontal `-isogeny then the set

Ikerϕ := {α ∈ O : α(P ) = 0 for all P ∈ kerϕ}

is a proper O-ideal a of norm ` and we have ϕ = ϕa.

Lemma 23.5. Let E/k be an elliptic curve with CM by an order O in an imaginary
quadratic field K and let ` = char(k) be prime. If ` divides [OK : O] then there are
no horizontal( ) `-isogenies from E, and otherwise the number of horizontal `-isogenies is
1 + D ∈ {0, 1, 2}, where D = disc(

`
O).

Proof. Let OK = [1, τ ]. If ` divides [OK : O] then
2
O = [1, `nτ ] for some n ∈ Z>0. By

Lemma 21.2, the index-` sublattices of O are [1, ` nτ ], which is not an ideal, and those of
the form Li = [`, `nτ + i] for some 0 ≤ i < `. If Li is an ideal then it must be closed under
multiplication by `nτ , which implies i = 0, but then Li is also closed under multiplication
by nτ 6∈ O and cannot possibly be a proper O-ideal, by Definition 17.6.

We now assume ` does not divide [OK : O]. Each OK-ideal a of norm ` corresponds to
an O-ideal a ∩ O of norm ` (since [OK : a] = ` is prime to [ K :

1
O O]), and this is O-ideal is

invertible, hence proper, since the fractional O-ideal (a` ∩ O) is its inverse (the key point
is that `OK ∩O = `O because [OK : O] is prime to `). Conversely, if a is a proper O-ideal
of norm ` , then aOK is an OK-ideal of norm `. Thus in the number of proper O-ideals of
norm ` is simply the number of OK-ideals of norm `, which is 1 +

(
D
)
, by Lemma 22.5.

`

In the previous lecture we proved that if k = Fp is a finite field with 4p = t2 − v2D and
t 6≡ 0 mod p then the polynomial HD(X) then splits into distinct linear factors in Fp[X],

ˆand its roots are the reductions of j-invariants of elliptic curves E defined over the ring class
field L = K , where is the imaginary quadratic order with discriminant D (recall thatO

ˆ
O

j(E) is an algebraic integer, hence an element of OL, and the reduction map sends elements
of OL to their image in OL/q ' Fp, where q is a prime OL-ideal or norm p dividing pOL).

It is not difficult to show that the corresponding elliptic curve E/Fp obtained by re-
ˆducing an integral Weierstrass equation for E modulo q must have O ⊆ End(E); each
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ˆendomorphism of E can be written as a rational map with coefficients in OL that we can
reduce modulo q. It takes a bit more work to show O = End(E), but this can be done.
Moreover, this accounts for all the elliptic curves over Fp that have CM by O. This is a
consequence of the Deuring lifting theorem and related results (see Theorems 12, 13, and
14 in [6, §13]), which we will not take the time to prove.

We should note that this does not apply when p is not of the form 4p = t2 − v2D; in
this case there cannot be any elliptic curves defined over Fp with CM by O. To see this,
note that if E/Fp has CM by O then the Frobenius endomorphism has the form

t v
√
D

π =
±

2
∈ O ' End(E),

for some integer v, with t = trπ 6≡ 0 mod p. We have p = Nπ = ππ, so

4p = 4ππ = t2 − v2D.

Moreover, we must have t 6≡ 0 mod p because E is not supersingular.

Remark 23.6. It can happen that HD(X) has roots in Fp even when p is not of the form
4p = t2 − v2D, but by the argument above, these roots cannot be j-invariants of elliptic
curv( ) es with CM by
D

O. This cannot happen p = pp splits in K (which occurs exactly when
= 1), because L/K is Galois and the residue field extensionsp Fq/Fp all have the same

degree (so HD mod p either has no roots at all or splits completely). But L/Q is typically
not Galois and if p is inert in K then we can easily have HD with roots modulo p; this is
one way to construct supersingular curves; see [1].

It follows from our discussion that for any prime p the set

Ell (FO p) := {E/Fp : End(E) ' O}

is either empty or has cardinality equal to the class number h(O).
Having determined the number of horizontal `-isogenies that an elliptic curve E/k with

CM by O can have in Lemma 23.5, we would now like to determine the number of ascending
and descending `-isogenies E can have, at least in the case that k = Fp is a finite field. In
the proof of Lemma 23.5 we used the fact that the map that sends a proper O-ideal a to
the OK-ideal aO is norm-preserving and surjective in the sense that every OK-ideal a with
norm prime to [OK : O] is in its image. It also commutes with multiplication of invertible
ideals and induces a surjective group homomorphism of ideal class groups. This holds more
generally if we replace OK by any order O′ containing O. If O ⊆ O′ then we always have
a surjective group homomorphism

ψ : cl(O) � cl(O′)

that is induced by the norm-preserving map a 7→ aO′ defined on invertible ideals. If we
are working in a finite field Fp with 4p = t2 − v2D, where D = disc(O), then the sets
Ell (Fp) and Ell ′(Fp) are both nonempty, since we can also write 4p = t2O − v2f2D′, whereO
f = [O′ : O]. These sets are torsors for the corresponding class groups cl(O) and cl(O′), and
it is natural to ask if there is a surjective map of sets Ell (FO p) � EllO′(Fp) corresponding to
ψ that can be realized via isogenies. In terms of the case [O′ : O] = ` that we are interested
in, these will be ascending isogenies.
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Given an elliptic curve E with CM by O with index ` in O′ there is a natural candidate
for an ascending isogeny to a curve E′ with CM by O′. If we put O′ = [1, τ ] and O = [1, `τ ]
then a = [`, `τ ] is an O-ideal of norm ` (it is the intersection of `O with O′), but as noted
in the proof of Lemma 23.5, it is not a proper O-ideal so it does not correspond to the CM
action of a class in cl(O). Nevertheless, the a-torsion subgroup E[a] is an order-` subgroup
of E[`] and there is a corresponding separable isogeny ϕa with kernel E[a] whose image
is an elliptic curve E′ with CM by O′. Rather than prove this directly, we are going to
use a simpler combinatorial argument to show that every elliptic curve E with CM by O
admits a unique ascending isogeny to an elliptic curve E′ with CM by O′, which will tell
us everything we need to know. In order to apply our combinatorial argument we need to
know the cardinality of kerψ, which is just the ratio of the class numbers h(O)/h(O′). This
ratio is given by the following lemma.

Lemma 23.7. Let ` be a prime, let O be an index-` suborder of an imaginary quadratic
order O′ of discriminant D′ < −4. Then

h(O)
= `

h(O′)
−
(
D′

`

)
(1)

Proof. This follows directly from [3, Thm. 7.24].

Remark 23.8. To handle D′ = −3,−4 one needs to include a correction factor to account
for the fact that in these cases O′ has a larger unit group than O; this corresponds to the
difference in the multiplicities of the edges of the `-isogeny graph incident to j-invariants
0 and 1728 (with CM by the orders of discriminant −3 and −4, respectively). Divide the
RHS of (1) by 3 when D′ = 3 and by 2 when D′ = −4.

Theorem 23.9. Let E/Fp be an elliptic curve with CM by an imaginary quadratic order O
that is an index-` suborder of O′, with D′ = disc(O′) < −4 and ` = char(k) prime. Up to
isomorphism, there is a unique `-isogeny from E to an elliptic curve E′/Fp with CM by O.

Proof. The existence of E/Fp implies that Ell (FO p) is non-empty, hence has cardinality
h(O), and we must have

4p = t2 − v2D = t2 − v2`2D′,

where t = trπE is the trace of the Frobenius endomorphism of E. Thus Ell ′(Fp) is alsoO
non-empty and has cardinality h(O′), and the same argument applies to any order that
contains O. For each j(E′) ∈ EllO′ every `-isogeny E′ → E′′ leads to an elliptic curve that
has CM by O, O′ or an order that contains O′ with index `, and every such curve is defined
over Fp. It follows that the polynomial Φ`(j(E

′), Y ) ∈ Fp[Y ] has `+ 1 roots corresponding
to `+ 1 distinct `-isogenies.

We proceed by induction on the power of ` dividing [OK : O′]. In the base case ` does
not divide [OK : O′] and none of the elliptic curves E′ with CM by O′ have any ascending
`-isogenies,( ) ′

and each has exactly 1 +
`

)
horizontal `-isogenies. This implies that there are

`− D′

(
D

> 0 descending `-isogenies for each E
`

′, a total of(
`−

(
D′

`

))
h(O′) (2)

descending `-isogenies in all.
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So let E1
′ → E1 be one of these descending `-isogenies, with E1

′ and E1 twisted so that
trπE1 = trπE′ = t (as opposed to −t), and let φ1 : E1 → E1

′ be the dual isogeny, which we
1

note is an ascending `-iosgeny. Now choose a proper O-ideal a of prime norm distinct from
` and p for which ϕa : E1 → E is a horizontal isogeny corresponding to the CM action of
a on E1; this is possible because j(E1) and j(E) are elements of the cl(O)-torsor Ell (FO p).
Let a′ = aO′ be the corresponding proper O′-ideal and let ϕa′ : E1

′ → E′ be the horizontal
isogeny corresponding to the CM action of a′ on E1

′ . We then have a commutative diagram
of isogenies

E ϕa′1
′ E′

φ φ1

E ϕ
1 a E

in which φ is the separable isogeny defined (up to isomorphism) by

kerφ := ϕa(ker(ϕa′(φ1)).

We then have
degϕa deg φ = deg φ1 degϕa

and
degϕa = Na = Na′ = degϕa

,

so deg φ = deg φ1 = `. Thus φ is an ascending `-isogeny. This argument did not depend
on any property of E other than that it has CM by O. It follows that every elliptic curve
E/Fp with CM by O admits an ascending `-isogeny, and by Lemma 23.7 there are

h(O) =

(
`−

(
D′

`

))
h(O′)

such E/Fp with distinct j-invariants j(E) ∈ Ell (Fp). But the RHS above is exactly theO
total number of descending `-isogenies from elliptic curves E′/Fp with CM by O′ given
by (2). It follows that each elliptic curve E/Fp with CM by O has exactly one ascending
`-isogeny to a curve E′/Fp with CM by O′.

This completes the proof of the base case, and the inductive step is essentially the same.
Now [OK : O′] is divisible by ` so there are no horizontal `-isogenies between elliptic curves
E′/Fp with CM by O′, and each admits exactly one ascending `-isogeny (by the inductive

′
hypothesis), and therefore admits exactly ` = ` − D descending `-isogenies (note that `

`

now divides D′
′

). Thus there are again a total of (`

(
−

)(
D
)
)h(O′) descending `-isogenies and

`
this matches the cardinality of Ell (Fp), so each elliptic curve E/Fp with CM by O admitsO
exactly one ascending `-iosogeny.

Remark 23.10. The theorem above holds for any finite field Fq and the proof is the same.
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Figure 1: An ordinary component of G3(Fp).

23.2 Isogeny volcanoes

Having determined the exact number of horizontal, ascending, and descending `-isogenies
that arise for an ordinary elliptic curve over a finite field, we can now completely determine
the structure of the ordinary components of G`(Fp). Figure 1 depicts a typical example.

Figure 2 shows the same graph from a different perspective. With a bit of imagination,
one can see the profile of a volcano: there is a crater formed by the cycle at the top, and
the trees handing down from each edge form the sides of the volcano.

Figure 2: A 3-volcano of depth 2.

Definition 23.11. An `-volcano V is a connected undirected graph whose vertices are
partitioned into one or more levels V0, . . . , Vd such that the following hold:

1. The subgraph on V0 (the surface) is a regular graph of degree at most 2.

2. For i > 0, each vertex in Vi has exactly one neighbor in level Vi−1, and this accounts
for every edge not on the surface.
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3. For i < d, each vertex in Vi has degree `+ 1.

Level Vd is called the floor of the volcano; the floor and surface coincide when d = 0.

As with G`(K), we allow multiple edges and self-loops, but now we work with an undi-
rected graph. Note that if the surface of an `-volcano has more than two vertices, it must
be a simple cycle. Two vertices may be connected by one or two edges, and a single vertex
may have 0, 1, or 2 self-loops. Note that, as an abstract graph, an `-volcano is completely
determined by the integers `, d, and |V0|.

Remarkably, if we ignore the exceptional j-invariants 0 and 1728, the ordinary compo-
nents of G`(Fp) are all `-volcanoes. This was proved by David Kohel in his PhD thesis.4

Theorem 23.12 (Kohel). Let V be an ordinary component of G`(Fq) that does not contain
the j-invariants 0 or 1728. Then V is an `-volcano for which the following hold:

(i) The vertices in level Vi all have the same endomorphism ring Oi.
D(ii) The subgraph on V0 has degree 1 + 0 , where D0 = disc(
`

O0).

(iii) If
(D0

)
≥ 0, then |V0| is the order of

(
[l]

)
in cl(O0); otherwise |V0`

| = 1.

(iv) The depth of V is d, where 4p = t2−`2dv2D0 with ` ⊥ vD 2 2
0, t = (trπE) for j(E) ∈ V .

(v) ` - [OK : O0] and [Oi : Oi+1] = ` for 0 ≤ i < d.

Proof. The theorem follows easily from the results we have already proved. Let V be
an ordinary component of G`(Fq) that does not contain 0 or 1728. Then, as previously
noted, V is bi-directed and can be viewed as an undirected graph. It follows from Theorem
23.3 that every vertex of V corresponds to an elliptic curve with CM by an order O in
the same imaginary quadratic field K and that the orders O that occur differ only the
power of ` that divides their conductor. Furthermore, if `d is the largest power of ` that
divides the conductor of any of the orders O, then we may partition V into levels V0, . . . , Vd
corresponding to orders O0, . . . ,Od for which ν`([OK : Oi]) = `, This addresses (i) and (v).

Parts (ii) and (iii) follow from Lemma 23.5 and the CM action of cl(O0), and part
(iv) follows from Theorem 22.10 (which can be generalized to prime powers q): if we have
4q = t2 − v2D0 then the sets Ell i(k) are all non-empty but the set EllO Od+1

(k) must be
empty since `d+1 does not divide v.

Finally, for i > d every v ∈ Vi must have degree ` + 1, because the roots of Φ`(v, Y )
(which has degree ` + 1) all lie in EllOi(Fq), EllOi+1(Fq), or, for i > 0, EllOi 1(Fq). This,−

together with (ii) and Theorem 23.3, proves that V is indeed an `-volcano.

Remark 23.13. Theorem 23.12 is easily extended to the case where V contains 0 or 1728,
via Remark 23.2 Parts (i)-(v) still hold, the only necessary modification is the claim that
V is an `-volcano. When V contains 0, if V1 is non-empty then it contains 1 `3 − −3

`
vertices, and each vertex in V1 has three incoming edges from 0 but only one

1 is

(
outgoing

edge to 0. When V contains 1728, if V non-empty then it contains 1 ` −1 vertices,

( ))
2

(
−
(
`

and each vertex in V1 has two incoming edges from 1728 but only one outgoing edge to
1728. This 3-to-1 (resp. 2-to-1) discrepancy arises from the action of Aut(E) on

))
the cyclic

subgroups of E[`] when j(E) = 0 (resp. 1728). Otherwise, V satisfies all the requirements
of an `-volcano, and most of the algorithms designed for `-volcanoes work just as well on
ordinarycomponents of G`(Fq) that contain 0 or 1728.

4The term “volcano” was not used by Kohel, it was introduced by Fouquet and Morain in [4].
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23.3 Finding the floor

The vertices that lie on the floor of an `-volcano V are distinguished by their degree.

Lemma 23.14. Let v be a vertex in an ordinary component V of depth d in G`(Fq). Either
deg v ≤ 2 and v ∈ Vd, or deg v = `+ 1 and v 6∈ Vd.

Proof. If d = 0 then V = V0 = Vd is a regular graph of degree at most 2 and v ∈ Vd.
Otherwise, either v ∈ Vd and v has degree 1, or v 6∈ Vd and v has degree `+ 1.

Given an arbitrary vertex v ∈ V , we would like to find a vertex on the floor of V . Our
strategy is very simple: if v0 = j(E) is not already on the floor then we will construct a
random path from v0 to a vertex vs on the floor. By a path, we mean a sequence of vertices
v0, v1, . . . , vs such that each pair (vi−1, vi) is an edge and vi = vi−2 (no backtracking is
allowed).

Algorithm FindFloor
Given an ordinary vertex v0 ∈ G`(Fq), find a vertex on the floor of its component.

1. If deg v0 ≤ 2 then output v0 and terminate.

2. Pick a random neighbor v1 of v0 and set s← 1.

3. While deg vs > 1: pick a random neighbor vs+1 = vs 1 of vs and increment s.−

4. Output vs.

Remark 23.15 (Removing known roots). As a minor optimization, rather than picking
vs+1 as a root of φ(Y ) = Φ`(vs, Y ) in step 3 of the FindFloor algorithm, we may use
φ(Y )/(Y − vs 1)

e, where e is the multiplicity of v− s−1 as a root of φ(Y ). This is slightly
faster and eliminates the need to check that vs+1 = vs−1.

Notice that once FindFloor picks a descending edge (one leading closer to the floor),
every subsequent edge must also be descending, because it is not allowed to backtrack along
the single ascending edge and there are no horizontal edges below the surface. It follows
that the expected length of the path chosen by FindFloor is δ + O(1), where δ is the
distance from v0 to the floor along a shortest path. With a bit more effort we can find a
path of exactly length δ, a shortest path to the floor. The key to doing so is observe that all
but at most two of the `+1 edges incident to any vertex above the floor must be descending
edges. Thus if we construct three random paths from v0 that all start with a different initial
edge, then one of the initial edges must be a descending edge, which necessarily leads to a
shortest path to the floor.

Algorithm FindShortestPathToFloor
Given an ordinary v0 ∈ G`(Fq), find a shortest path to the floor of its component.

1. Let v0 = j(E). If deg v0 ≤ 2 then output v0 and terminate.

2. Pick three neighbors of v0 and extend paths from each of these neighbors in parallel,
stopping as soon as any of them reaches the floor.5

3. Output a path that reached the floor.

5If v0 does not have three distinct neighbors then just pick all of them.
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The main virtue of FindShortestPathToFloor is that it allows us to compute δ,
which tells us the level Vd of−δ j(E) relative to the floor Vd. It effectively gives us an
“altimeter” δ(v) that we may be used to navigate V . We can determine whether a given
edge (v1, v2) is horizontal, ascending, or descending, by comparing δ(v1) to δ(v2), and we
can determine the exact level of any vertex.6

There are many practical applications of isogeny volcanoes, some of which you will
explore on Problem Set 12. See the survey paper [9] for further details and references.
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