## 20 The modular equation

In the previous lecture we defined modular curves as quotients of the extended upper half plane under the action of a congruence subgroup (a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ that contains $\Gamma(N)$ for some integer $N \geq 1$ ). Of particular interest is the curve $X_{0}(N):=\mathbb{H}^{*} / \Gamma_{0}(N)$, where

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \bmod N\right\} .
$$

The modular curve $X_{0}(N)$ plays a central role in the theory of elliptic curves. From a theoretical perspective, it lies at the heart of the modularity conjecture, a special case of which was used to prove Fermat's last theorem. From a practical perspective, it is a key ingredient for algorithms that work with isogenies of elliptic curves over finite fields, including the Schoof-Elkies-Atkin algorithm, an enhanced version of Schoof's algorithm that is now the standard algorithm for point-counting on elliptic curves over a finite fields.

There are two properties of $X_{0}(N)$ that make it so useful; the first, which we will prove in this lecture, is that it has a canonical model over $\mathbb{Z}$, which allows us to use it over any field (including finite fields). The second is that it parameterizes isogenies between elliptic curves; in particular, given the $j$-invariant of an elliptic curve $E$ and an integer $N$, we can use $X_{0}(N)$ to find the $j$-invariants of all elliptic curves related to $E$ by a cyclic isogeny of degree $N$ (we will define exactly what this means in the next lecture). Both of these properties will play a key role in our proof that the Hilbert class polynomial $H_{D}(X)$ has integer coefficients, which implies that the $j$-invariants of elliptic curves $E / \mathbb{C}$ with complex multiplication are algebraic integers, and has many other theoretical and practical applications.

In order to better understand modular curves, we introduce modular functions.

### 20.1 Modular functions

Modular functions are meromorphic functions on a modular curve. To make this statement more precise, we first need to discuss $q$-expansions. The map $q: \mathbb{H} \rightarrow \mathbb{D}$ defined by

$$
q(\tau)=e^{2 \pi i \tau}=e^{-2 \pi \operatorname{im} \tau}(\cos (2 \pi \mathrm{re} \tau)+i \sin (2 \pi \mathrm{re} \tau))
$$

bijectively maps each horizontal strip $\{\tau: n \leq \operatorname{im} \tau>n+1\}$ of the upper half plane $\mathbb{H}$ to the punctured unit disk $\mathbb{D}-\{0\}$. We also note that

$$
\lim _{i m \rightarrow \infty} q(\tau)=0
$$

If $f: \mathbb{H} \rightarrow \mathbb{C}$ is a meromorphic function that satisfies $f(\tau+1)=f(\tau)$ for all $\tau \in \mathbb{H}$, then we can write $f$ in the form $f(\tau)=f^{*}(q(\tau))$, where $f^{*}$ is meromorphic on the punctured unit disk. The $q$-series or $q$-exansion for $f(\tau)$ is the Laurent-series expansion of $f^{*}$ at 0 composed with $q(\tau)$ :

$$
f(\tau)=f^{*}(q(\tau))=\sum_{n=-\infty}^{+\infty} a_{n} q(\tau)^{n}=\sum_{n=-\infty}^{+\infty} a_{n} q^{n}
$$

where we typically just write $q$ for $q(\tau)$ (as we will henceforth). If $f^{*}$ is meromorphic at 0 then this series has only finitely many nonzero $a_{n}$ with $n<0$ and we can write

$$
f(\tau)=\sum_{n=n_{0}}^{\infty} a_{n} q^{n}
$$

with $a_{n_{0}} \neq 0$. We then say that $f$ is meromorphic at $\infty$, and call $n_{0}$ the order of $f$ at $\infty$; note that $n_{0}$ is also the order of $f^{*}$ at zero.

More generally, if $f$ satisfies $f(\tau+N)=f(\tau)$ for all $\tau \in \mathbb{H}$, then we can write $f$ as

$$
\begin{equation*}
f(\tau)=f^{*}\left(q(\tau)^{1 / N}\right)=\sum_{n=-\infty}^{\infty} a_{n} q^{n / N}, \tag{1}
\end{equation*}
$$

and we say that $f$ is meromorphic at $\infty$ if $f^{*}$ is meromorphic at 0 .
If $\Gamma$ is a congruence subgroup of level $N$, then for any $\Gamma$-invariant function $f$ we have $f(\tau+N)=f(\tau)\left(\right.$ consider $\left.\gamma=\left(\begin{array}{cc}1 & N \\ 0 & 1\end{array}\right)\right)$, so $f$ can be written in the form (1), and the same is true of the function $f(\gamma \tau)$, for any fixed $\gamma \in \Gamma$.

Definition 20.1. Let $\Gamma$ be a congruence subgroup and let $f: \mathbb{H} \rightarrow \mathbb{C}$ be a $\Gamma$-invariant meromorphic function. The function $f(\tau)$ is said to be meromorphic at the cusps if for every $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ the function $f(\gamma \tau)$ is meromorphic at $\infty$.

In terms of the extended upper half-plane $\mathbb{H}^{*}$, notice that for any $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$,

$$
\lim _{\operatorname{im} \tau \rightarrow \infty} \gamma \tau \in \mathbb{H}^{*} \backslash \mathbb{H}=\mathbb{P}^{1}(\mathbb{Q})
$$

Thus to say that $f(\gamma \tau)$ is meromorphic at $\infty$ is the same thing as saying that $f(\tau)$ is meromorphic at the cusp $\gamma \infty$. Note that since $f$ is $\Gamma$-invariant, in order to check whether or not $f$ is meromorphic at the cusps, it suffices to consider a set of cusp representatives $\gamma_{0} \infty, \gamma_{1} \infty, \ldots, \gamma_{k} \infty$ for $\Gamma$; this set is finite because $\Gamma$ has finite index in $\mathrm{SL}_{2}(\mathbb{Z})$.

Definition 20.2. Let $\Gamma$ be a congruence subgroup. A modular function for $\Gamma$ is a meromorphic function $g: \mathbb{H}^{*} / \Gamma \rightarrow \mathbb{C}$, equivalently, a $\Gamma$-invariant meromorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ that is meromorphic at the cusps.

Sums, products, and quotients of modular functions $\Gamma$ are also modular functions for $\Gamma$, as are constant functions, thus the set of all modular functions for $\Gamma$ is a field that is a transcendental extension of $\mathbb{C}$. Notice that if $f(\tau)$ is a modular function for a congruence subgroup $\Gamma$, then $f(\tau)$ is also a modular function for every congruence subgroup $\Gamma^{\prime} \subseteq \Gamma$ : clearly $f(\tau)$ is $\Gamma^{\prime}$-invariant since $\Gamma^{\prime} \subseteq \Gamma$, and the property of being meromorphic at the cusps does not depend on $\Gamma^{\prime}$.

### 20.2 Modular Functions for $\Gamma(1)$

We first consider the modular functions for $\Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})$. In Lecture 16 we proved that the $j$-function is $\mathrm{SL}_{2}(\mathbb{Z})$-invariant and holomorphic (hence meromorphic) on $\mathbb{H}$. To show that the $j(\tau)$ is a modular function for $\Gamma(1)$ we just need to show that it is meromorphic at the cusps. The cusps are all $\Gamma(1)$-equivalent, so it suffices to show that the $j(\tau)$ is meromorphic at $\infty$, which we do by computing its $q$-expansion. We first note the following lemma, part of which was used in Problem Set 8.

Lemma 20.3. Let $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$, and let $q=e^{2 \pi i \tau}$. We have

$$
\begin{gathered}
g_{2}(\tau)=\frac{4 \pi^{4}}{3}\left(1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}\right) \\
g_{3}(\tau)=\frac{8 \pi^{6}}{27}\left(1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}\right) \\
\Delta(\tau)=g_{2}^{3}(\tau)-27 g_{3}^{2}(\tau)=(2 \pi)^{12} q \sum_{n=1}^{\infty}\left(1-q^{n}\right)^{24} .
\end{gathered}
$$

Proof. See Washington [4, pp. 273-274].
Corollary 20.4. With $q=e^{2 \pi i \tau}$ we have

$$
j(\tau)=\frac{1}{q}+744+\sum_{n=1}^{\infty} a_{n} q^{n}
$$

where the $a_{n}$ are integers.
Proof. We have

$$
\begin{aligned}
g_{2}^{3}(\tau) & =\frac{64}{27} \pi^{12}\left(1+240 q+O\left(q^{2}\right)\right)^{3}=\frac{64}{27} \pi^{12}\left(1+720 q+O\left(q^{2}\right)\right), \\
\Delta(\tau) & =\frac{64}{27} \pi^{12}\left(3^{3} \cdot 2^{6}\right) q\left(1-24 q+O\left(q^{2}\right)\right),
\end{aligned}
$$

where each $O\left(q^{2}\right)$ denotes sums of higher order terms with integer coefficients. Thus

$$
j(\tau)=\frac{1728 g_{2}^{3}(\tau)}{\Delta(\tau)}=\frac{1}{q}+744+\sum_{n=1}^{\infty} a_{n} q^{n}
$$

with $a_{n} \in \mathbb{Z}$, as desired.
Remark 20.5. The proof of Corollary 20.4 explains the factor $1728=3^{3} \cdot 2^{6}$ that appears in the definition of the $j$-function: it is the least positive integer that ensures that the $q$-expansion of $j(\tau)$ has integral coefficients.

The corollary implies that the $j$-function is a modular function for $\Gamma(1)$, with a simple pole at $\infty$. We proved in Theorem 18.5 that the $j$-function defines a holomorphic bijection from $Y(1)=\mathbb{H} / \Gamma(1)$ to $\mathbb{C}$. If we extend the domain of $j$ to $\mathbb{H}^{*}$ by defining $j(\infty)=\infty$, then the $j$-function defines an isomorphism from $X(1)$ to the Riemann sphere $\mathcal{S}:=\mathbb{P}^{1}(\mathbb{C})$ that is holomorphic everywhere except for a simple pole at $\infty$. In fact, if we fix $j(\rho)=0$, $j(i)=1728$, and $j(\infty)=\infty$, then the $j$-function is uniquely determined by this property (as noted above, fixing $j(i)=1728$ ensures an integral $q$-expansion). It is for this reason that the $j$-function is sometimes referred to as the modular function. Indeed, every modular function for $\Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})$ can be expressed in terms of the $j$-function.

Theorem 20.6. Every modular function for $\Gamma(1)$ is a rational function of $j(\tau)$. Equivalently, $\mathbb{C}(j)$ is the field of modular functions for $\Gamma(1)$.

Proof. Let $g: X(1) \rightarrow \mathbb{C}$ be a modular function for $\Gamma(1)$. Then $f=g \circ j^{-1}: \mathcal{S} \rightarrow \mathbb{C}$ is meromorphic. By Lemma 20.7 below, this implies that $f$ is a rational function. Therefore $g=f \circ j \in \mathbb{C}(j)$, as desired.

Lemma 20.7. If $f: \mathcal{S} \rightarrow \mathbb{C}$ is meromorphic, then $f(z)$ is a rational function.
Proof. We may assume without loss of generality that $f$ has no zeros or poles at $\infty$ (the north pole of $\mathcal{S}$ ). If this is not the case, we may replace $f(z)$ by $f(z+c)$ with an appropriate constant $c \in \mathbb{C}$; in terms of $\mathbb{P}^{1}(\mathbb{C})$ this corresponds to applying the linear fractional transformation ( $\left.\begin{array}{ll}1 & c \\ 0 & 1\end{array}\right)$ which sends affine projective points $(z: 1)$ to $(z+c: 1)$ and moves the point $(1: 0)$ at infinity to $(c: 0)$. Note that if $f(z)$ is a rational function in $z$, so is $f(z+c)$.

Let $\left\{p_{i}\right\}$ be the set of poles of $f(z)$, with orders $m_{i}:=-\operatorname{ord}_{p_{i}}(f)$, and let $\left\{q_{j}\right\}$ be the set of zeros of $f$, with orders $n_{j}:=\operatorname{ord}_{q_{j}}(f)$. We claim that

$$
\sum_{i} m_{i}=\sum_{j} n_{j} .
$$

To see this, triangulate $\mathcal{S}$ so that all the poles and zeros of $f(z)$ lie in the interior of a triangle. It follows from Cauchy's argument principle (Theorem 15.16) that the counter integral

$$
\int_{\Delta} \frac{f^{\prime}(x)}{f(z)} d z
$$

about each triangle (oriented counter clockwise) is the difference between the number of zeros and poles that $f(z)$ in its interior. The sum of these integrals must be zero, since each edge in the triangulation is traversed twice, once in each direction.

The function $h: \mathcal{S} \rightarrow \mathbb{C}$ defined by

$$
h(z)=f(z) \cdot \frac{\prod_{i}\left(z-p_{i}\right)^{m_{i}}}{\prod_{j}\left(z-q_{j}\right)^{n_{j}}}
$$

has no zeros or poles on $\mathcal{S}$. It follows from Liouville's theorem that $h$ is a constant function, and therefore $f(z)$ is a rational function of $z$.

Corollary 20.8. Every modular function $f(\tau)$ for $\Gamma(1)$ that is holomorphic on $\mathbb{H}$ is a polynomial in $j(\tau)$.

Proof. Theorem 20.6 implies that $f$ is a rational function in $j$, which we may write as

$$
f(\tau)=c \frac{\prod_{i}\left(j(\tau)-\alpha_{i}\right)}{\prod_{k}\left(j(\tau)-\beta_{k}\right)}
$$

for some $c, \alpha_{i}, \beta_{j} \in \mathbb{C}$. Now $j: \mathcal{F} \rightarrow \mathbb{C}$ is a bijection, so $f(\tau)$ must have a pole at $j^{-1}\left(\beta_{k}\right) \in \mathcal{F}$ for each $\beta_{k}$. But $f(\tau)$ is holomorphic and therefore has no poles, so the set $\left\{\beta_{j}\right\}$ is empty and $f(\tau)$ is a polynomial in $j(\tau)$.

### 20.2.1 Modular functions for $\Gamma_{0}(N)$

We now consider modular functions for the congruence subgroup $\Gamma_{0}(N)$.
Theorem 20.9. The function $j_{N}(\tau):=j(N \tau)$ is a modular function for $\Gamma_{0}(N)$.

Proof. The function $j_{N}(\tau)$ is obviously meromorphic (in fact holomorphic) on $\mathbb{H}$, since $j(\tau)$ is, and it is meromorphic at the cusps for the same reason (note that $\tau$ is a cusp if and only if $N \tau$ is). We just need to show that $j_{N}(\tau)$ is $\Gamma_{0}(N)$-invariant.

Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$. We have

$$
j_{N}(\gamma \tau)=j(N \gamma \tau)=j\left(\frac{N(a \tau+b)}{c \tau+d}\right)=j\left(\frac{a N \tau+b N}{\frac{c}{N} N \tau+d}\right)=j\left(\gamma^{\prime} N \tau\right)
$$

where

$$
\gamma^{\prime}=\left(\begin{array}{cc}
a & b N \\
c / N & d
\end{array}\right) .
$$

We now note that $\gamma^{\prime} \in \operatorname{SL}_{2}(\mathbb{Z})$, since $\operatorname{det}\left(\gamma^{\prime}\right)=\operatorname{det}(\gamma)=1$ and $c \equiv 0(\bmod N)$ implies that $c / N$ is an integer. And $j(\tau)$ is $\mathrm{SL}_{2}(\mathbb{Z})$-invariant, so

$$
j_{N}(\gamma \tau)=j\left(\gamma^{\prime} N \tau\right)=j(N \tau)=j_{N}(\tau),
$$

thus $j_{N}(\tau)$ is $\Gamma_{0}(N)$-invariant.
Theorem 20.10. $\mathbb{C}\left(j, j_{N}\right)$ is the field of modular functions for $\Gamma_{0}(N)$.
Cox gives a very concrete proof of this result in [1, Thm. 11.9]; here we give a simpler, but somewhat more abstract proof that is adapted from Milne [2, Thm. V.2.3].

Proof. Let $\left\{\gamma_{1}, \cdots, \gamma_{m}\right\} \subset \Gamma(1)$ be a set of right coset representatives for $\Gamma_{0}(N)$ as a subgroup of $\Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})$; this means that the cosets $\Gamma_{0}(N) \gamma_{1}, \cdots, \Gamma_{0}(N) \gamma_{m}$ are distinct and cover $\Gamma(1)$. Without loss of generality, we may assume $\gamma_{1}=I$ is the identity. Let $K_{N}$ denote the field of modular functions for $\Gamma_{0}(N)$. By the previous theorem, $j_{N} \in K_{N}$, and clearly $j \in K_{N}$, since $j$ is a modular function for $\Gamma(1)$ and therefore for $\Gamma_{0}(N) \subseteq \Gamma(1)$. Thus $K_{N}$ is an extension the field $\mathbb{C}\left(j, j_{N}\right)$, we just need to show that it is a trivial extension, i.e. that $\left[K_{N}: \mathbb{C}\left(j, j_{N}\right)\right]=1$.

We first bound the degree of $K_{N}$ as an extension of the subfield $\mathbb{C}(j)$. Consider any function $f \in K_{N}$, and for $1 \leq i \leq m$ define $f_{i}(\tau):=f\left(\gamma_{i} \tau\right)$. Since $f(\tau)$ is $\Gamma_{0}(N)$-invariant, the function $f_{i}(\tau)$ does not depend on the choice of the right-coset representative $\gamma_{i}$ (for any $\gamma_{i}^{\prime} \in \Gamma_{0}(N) \gamma_{i}$ the functions $f\left(\gamma_{i}^{\prime} \tau\right)$ and $f\left(\gamma_{i} \tau\right)$ are the same). This implies that for any $\gamma \in \Gamma(1)$, the set of functions $\left\{f\left(\gamma_{i} \gamma \tau\right)\right\}$ is equal to the set of functions $\left\{f\left(\gamma_{i} \tau\right)\right\}$, since right-multiplication by $\gamma$ permutes the right cosets $\left\{\Gamma_{0}(N) \gamma_{i}\right\}$. Thus any symmetric polynomial in the functions $f_{i}$ is $\Gamma(1)$-invariant, and therefore a rational function of $j(\tau)$, by Theorem 20.6. Now let

$$
P(Y)=\prod_{i \in\{1, \cdots, m\}}\left(Y-f_{i}\right)
$$

Then $f=f_{1}$ is a root of $P$ (since $\gamma_{1}=I$ ), and the coefficients of $P(Y)$ lie in $\mathbb{C}(j)$, since they are all symmetric polynomials in the $f_{i}$. Thus every $f \in K_{N}$ is the root of a monic polynomial over $\mathbb{C}(j)$ of degree $m$; this implies that $K_{N} / \mathbb{C}(j)$ is an algebraic extension, and it is separable, since we are in characteristic zero. We claim that $K_{N}$ is also finitely generated: if not we could pick functions $g_{1}, \ldots, g_{m+1} \in K_{N}$ such that

$$
\mathbb{C}(j) \subsetneq \mathbb{C}(j)\left(g_{1}\right) \subsetneq \mathbb{C}(j)\left(g_{1}, g_{2}\right) \subsetneq \cdots \subsetneq \mathbb{C}(j)\left(g_{1}, \ldots, g_{m+1}\right) .
$$

But then $\mathbb{C}(j)\left(g_{1}, \ldots, g_{m+1}\right)$ is a finite separable extension of $\mathbb{C}(j)$ of degree at least $m+1$, and the primitive element theorem implies it is generated by some function $g$ whose minimal
polynomial most have degree greater than $m$, which is a contradiction. The same argument then shows that $\left[K_{N}: \mathbb{C}(j)\right] \leq m$.

Now let $F \in \mathbb{C}(j)[Y]$ be the minimal polynomial of $f$ over $\mathbb{C}(j)$, which necessarily divides $P(Y)$, but may have lower degree. We can regard $F(j(\tau), f(\tau))$ as a function of $\tau$, which must be the zero function. If we then replace $\tau$ by $\gamma_{i} \tau$, for every $\tau \in \mathbb{H}$ we have

$$
F\left(j\left(\gamma_{i} \tau\right), f\left(\gamma_{i} \tau\right)\right)=F\left(j(\tau), f\left(\gamma_{i} \tau\right)\right)=F\left(j(\tau), f_{i}(\tau)\right)=0
$$

where we have used the fact that the $j$-function is $\Gamma(1)$-invariant. Thus the functions $f_{i}$ all have the same minimal polynomial $F$ as $f$, which implies that $P=F^{n}$ for some $n \geq 1$. We have $n=1$ if and only if the $f_{i}$ are distinct, and if this is the case then we must have $K_{N}=\mathbb{C}(j, f)$, since $\left[K_{N}: \mathbb{C}(j)\right] \leq m$ and $[\mathbb{C}(j, f): \mathbb{C}(j)]=m$.

Now consider $f=j_{N}$. By the argument above, to prove $K_{N}=\mathbb{C}\left(j, j_{N}\right)$ we just need to show that the functions $f_{i}(\tau)=j_{N}\left(\gamma_{i} \tau\right)=j\left(N \gamma_{i} \tau\right)$ are distinct functions of $\tau$ as $i$ varies.

Suppose not. Then $j\left(N \gamma_{i} \tau\right)=j\left(N \gamma_{k} \tau\right)$ for some $i \neq k$ and $\tau \in \mathbb{H}$ that we can choose to have stabilizer $\pm I$ (distinct meromorphic functions cannot agree on any open set where both are defined so we can easily avoid $\Gamma(1)$-translates of $e^{\pi i}$ and $e^{2 \pi / 3}$ ). Fix a fundamental region $\mathcal{F}$ for $\mathbb{H} / \Gamma(1)$ and pick $\alpha, \beta \in \Gamma(1)$ so that $\alpha N \gamma_{i} \tau$ and $\beta N \gamma_{j} \tau$ lie in $\mathcal{F}$. The $j$-function is injective on $\mathcal{F}$, so

$$
j\left(\alpha N \gamma_{i} \tau\right)=j\left(\beta N \gamma_{k} \tau\right) \quad \Longleftrightarrow \quad \alpha N \gamma_{i} \tau= \pm \beta N \gamma_{k} \tau \quad \Longleftrightarrow \quad \alpha N \gamma_{i}= \pm \beta N \gamma_{k}
$$

where we may view $N$ as the matrix $\left(\begin{array}{cc}N & 0 \\ 0 & 1\end{array}\right)$, since $N \tau=\frac{N \tau+0}{0 \tau+1}$.
Now let $\gamma=\alpha^{-1} \beta=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. We have

$$
\left(\begin{array}{ll}
N & 0 \\
0 & 1
\end{array}\right) \gamma_{i}= \pm\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
N & 0 \\
0 & 1
\end{array}\right) \gamma_{k},
$$

and therefore

$$
\gamma_{i} \gamma_{k}^{-1}= \pm\left(\begin{array}{cc}
1 / N & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
N & 0 \\
0 & 1
\end{array}\right)= \pm\left(\begin{array}{cc}
a & b / N \\
c N & d
\end{array}\right) .
$$

We have $\gamma_{i} \gamma_{k}^{-1}$, so $b / N$ is an integer, and $c N \equiv 0 \bmod N$, so in fact $\gamma_{i} \gamma_{k}^{-1} \in \Gamma_{0}(N)$. But then $\gamma_{i}$ and $\gamma_{k}$ lie in the same right coset of $\Gamma_{0}(N)$, which is a contradiction.

### 20.3 The modular polynomial

Definition 20.11. The modular polynomial $\Phi_{N}$ is the minimal polynomial of $j_{N}$ over $\mathbb{C}(j)$.
As in the proof of Theorem 20.10, we may write $\Phi_{N} \in \mathbb{C}(j)[Y]$ as

$$
\Phi_{N}(Y)=\prod_{i=1}^{m}\left(Y-j_{N}\left(\gamma_{i} \tau\right)\right)
$$

where the $\gamma_{i}$ are right coset representatives for $\Gamma_{0}(N)$. The coefficients of $\Phi_{N}(Y)$ are symmetric polynomials in $j_{N}\left(\gamma_{i} \tau\right)$, so, as in the proof of Theorem $\underline{20.10}$ they are $\Gamma(1)$ invariant; and they are holomorphic on $\mathbb{H}$, so they are polynomials in $j$, by Corollary 20.8. Thus $\Phi_{N} \in \mathbb{C}[j, Y]$. If we replace every occurrence of $j$ in $\Phi_{N}$ with a new variable $X$ we obtain an element of $\mathbb{C}[X, Y]$ that we write as $\Phi_{N}(X, Y)$.

Our next task is to prove that the coefficients of $\Phi_{N}(X, Y)$ are actually integers, not just complex numbers. To simplify the presentation, we will only prove this for prime $N$, which is all that is needed in many practical applications (such as the SEA algorithm), and suffices to prove the main theorem of complex multiplication. $\frac{1}{-}$

We begin by fixing a specific set of right coset representatives for $\Gamma_{0}(N)$.
Lemma 20.12. For prime $N$ we can write the right cosets of $\Gamma_{0}(N)$ in $\Gamma(1)$ as

$$
\left\{\Gamma_{0}(N)\right\} \cup\left\{\Gamma_{0}(N) S T^{k}: 0 \leq k<N\right\},
$$

where $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
Proof. We first show that the union of these cosets is $\Gamma(1)$. Let $\gamma=\left(\begin{array}{cc}A \\ C & B \\ D\end{array}\right) \in \Gamma$. If $C \equiv 0 \bmod N$, then $\gamma \in \Gamma_{0}(N)$ lies in the first coset above. Otherwise, we note that

$$
S T^{k}=\left(\begin{array}{cc}
0 & -1 \\
1 & k
\end{array}\right) \quad \text { and } \quad\left(S T^{k}\right)^{-1}=\left(\begin{array}{cc}
k & 1 \\
-1 & 0
\end{array}\right)
$$

and for $C \not \equiv 0 \bmod N$, we may pick $k$ such that $k C \equiv D \bmod N$, since $N$ is prime. Then

$$
\gamma_{0}:=\gamma\left(S T^{k}\right)^{-1}=\left(\begin{array}{ll}
k A-B & A \\
k C-D & C
\end{array}\right) \in \Gamma_{0}(N)
$$

and $\gamma=\gamma_{0}\left(S T^{k}\right) \in \Gamma_{0}(N) S T^{k}$.
We now show the cosets are distinct. Suppose not. Then there must exist $\gamma_{1}, \gamma_{2} \in \Gamma_{0}(N)$ such that either (a) $\gamma_{1}=\gamma_{2} S T^{k}$ for some $0 \leq k<N$, or (b) $\gamma_{1} S T^{j}=\gamma_{2} S T^{k}$ with $0 \leq j<k<N$. Let $\gamma_{2}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. In case (a) we have

$$
\gamma_{1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & k
\end{array}\right)=\left(\begin{array}{ll}
b & b k-a \\
d & d k-c
\end{array}\right) \in \Gamma_{0}(N),
$$

which implies $d \equiv 0 \bmod N$. But then $\operatorname{det} \gamma_{2}=a d-b c \equiv 0 \bmod N$, a contradiction. In case (b), with $m=k-j$ we have

$$
\gamma_{1}=\gamma_{2} S T^{m} S^{-1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & m
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
-a-b m & -b \\
-c-d m & -d
\end{array}\right) \in \Gamma_{0}(N) .
$$

Thus $-c-d m \equiv 0 \bmod N$, and since $c \equiv 0 \bmod N$ and $m \not \equiv 0 \bmod N$, we must have $d \equiv 0 \bmod N$, which again implies $\operatorname{det} \gamma_{2}=a d-b c \equiv 0 \bmod N$, a contradiction.

Theorem 20.13. $\Phi_{N} \in \mathbb{Z}[X, Y]$.
Proof (for $N$ prime). Let $\gamma_{k}=S T^{k}$. By Lemma $\underline{20.12}$ we have

$$
\Phi_{N}(Y)=\left(Y-j_{N}(\tau)\right) \prod_{k=0}^{N-1}\left(Y-j_{N}\left(\gamma_{k} \tau\right)\right) .
$$

Let $f(\tau)$ be a coefficient of $\Phi_{N}(Y)$. Then $f(\tau)$ is holomorphic function on $\mathbb{H}$, since $j(\tau)$ is, $f(\tau)$ is $\Gamma(1)$-invariant, since, as in the proof of Theorem 20.10, it is symmetric polynomial

[^0]in $j_{N}(\tau)$ and the functions $j_{N}\left(\gamma_{k} \tau\right)$, corresponding to a set of right coset representatives for $\Gamma_{0}(N)$, and $f(\tau)$ is meromorphic at the cusps, since it is a polynomial in functions that are meromorphic at the cusps. Thus $f(\tau)$ is a modular function for $\Gamma(1)$ and therefore a polynomial in $j(\tau)$, by Corollary 20.8. By Lemma 20.14 below, if we can show that the $q$-expansion of $f(\tau)$ has integer coefficients, then it will follow that $f(\tau)$ is an integer polynomial in $j(\tau)$ and therefore $\Phi_{N} \in \mathbb{Z}[X, Y]$.

We first show that $f(\tau)$ has have rational coefficients. We have

$$
j_{N}(\tau)=j(N \tau)=\frac{1}{q^{N}}+744+\sum_{n=1}^{\infty} a_{n} q^{n N}
$$

where the $a_{n}$ are integers, thus $j_{N} \in \mathbb{Z}((q))$.
For $j_{N}\left(\gamma_{k} \tau\right)$, we have

$$
\begin{aligned}
j_{N}\left(\gamma_{k} \tau\right)=j\left(N \gamma_{k} \tau\right) & =j\left(\left(\begin{array}{cc}
N & 0 \\
0 & 1
\end{array}\right) S T^{k} \tau\right) \\
& =j\left(S\left(\begin{array}{ll}
1 & 0 \\
0 & N
\end{array}\right)\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right) \tau\right)=j\left(\left(\begin{array}{ll}
1 & 0 \\
0 & N
\end{array}\right)\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right) \tau\right)=j\left(\frac{\tau+k}{N}\right),
\end{aligned}
$$

where we are able to drop the $S$ because $j(\tau)$ is $\Gamma$-invariant. If we let $\zeta_{N}=e^{\frac{2 \pi i}{N}}$, then

$$
q\left(\frac{\tau+k}{N}\right)=e^{2 \pi i\left(\frac{\tau+k}{N}\right)}=e^{2 \pi i \frac{k}{N}} q^{1 / N}=\zeta_{N}^{k} q^{1 / N}
$$

and

$$
j_{N}\left(\gamma_{k} \tau\right)=\frac{\zeta_{N}^{-k}}{q^{1 / N}}+\sum_{n=0}^{\infty} a_{n} \zeta_{N}^{k n} q^{n / N}
$$

thus $j_{N}\left(\gamma_{k} \tau\right) \in \mathbb{Q}\left(\zeta_{N}\right)\left(\left(q^{1 / N}\right)\right)$.
The Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right)$ on the coefficients of the $q$-expansions of each $j_{N}\left(\gamma_{k} \tau\right)$ induces a permutation of the set $\left\{j_{N}(\gamma k \tau)\right\}$ and fixes $j_{N}(\tau)$. It follows that the coefficients of the $q$-expansion of $f$, which is a symmetric polynomial in these functions, are fixed by $\left.\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right)\right) / \mathbb{Q}\right)$ and therefore lie in $\mathbb{Q}$; thus $f \in \mathbb{Q}\left(\left(q^{1 / N}\right)\right)$.

We now note that the coefficients of the $q$-expansion of $f(\tau)$ are algebraic integers, since the coefficients of the $q$-expansions of $j_{N}(\tau)$ and the $j_{N}\left(\gamma_{k}\right)$ are algebraic integers, as is any polynomial combination of them. This implies $f(\tau) \in \mathbb{Z}\left(\left(q^{1 / N}\right)\right)$.

Finally, we recall that $f(\tau)$ is a polynomial in $j(\tau)$, so its $q$-expansion can have only integral powers of $q$; therefore $f(\tau) \in \mathbb{Z}((q))$, as desired.

Lemma 20.14 (Hasse $q$-expansion principal). Let $f(\tau)$ be a modular function for $\Gamma(1)$ that is holomorphic on $\mathbb{H}$ and whose $q$-expansion has coefficients that lie in an additive subgroup $A$ of $\mathbb{C}$. Then $f(\tau)=P(j(\tau))$, for some polynomial $P \in A[X]$.

Proof. By Corollary 20.8, we know that $f(\tau)=P(j(\tau))$ for some $P \in \mathbb{C}[X]$, we just need to show that $P \in \overline{A[X]}$. We proceed by induction on $d=\operatorname{deg} P$. The lemma clearly holds for $d=0$, so assume $d>0$. The $q$-expansion of the $j$-function begins with $q^{-1}$, so the $q$-expansion of $f(\tau)$ must have the form $\sum_{n=-d}^{\infty} a_{n} q^{n}$, with $a_{n} \in A$ and $a_{-d} \neq 0$. Let $P_{1}(X)=P(X)-a_{-d} X^{d}$, and let $f_{1}(\tau)=P_{1}(j(\tau))=f(\tau)-a_{-d} j(\tau)^{d}$. The $q$-expansion of the function $f_{1}(\tau)$ has coefficients in $A$, and by the inductive hypothesis, so does $P_{1}(X)$, and therefore $P(X)=P_{1}(X)+a_{-d} X^{d}$ also has coefficients in $A$.

## References

[1] David A. Cox, Primes of the form $x^{2}+n y^{2}$ : Fermat, class field theory, and complex multiplication, second edition, Wiley, 2013.
[2] J.S. Milne, Elliptic curves, BookSurge Publishers, 2006.
[3] J.H. Silverman, Advanced topics in the the arithmetic of elliptic curves, Springer, 1994.
[4] Lawrence C. Washington, Elliptic curves: number theory and cryptography, second edition, Chapman \& Hall/CRC, 2008.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.783 Elliptic Curves

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


[^0]:    ${ }^{1}$ The proof for composite $N$ is essentially the same, but explicitly writing down a set of right coset representatives $\gamma_{i}$ and computing the $q$-expansions of the functions $j_{N}\left(\gamma_{i} \tau\right)$ is more complicated.

