Description

These problems are related to the material covered in Lectures 18-21. As usual, the first person to spot each non-trivial typo/error will receive 1-3 points of extra credit.

Instructions: Either solve both Problems 1 and 2, or just solve Problem 3, and then complete Problem 4, which is a survey. Problem 1 part (d) uses a result from Problem 3 part (f) of Problem Set 10 - contact me if you did not solve this problem and I can send you the result you need.

Problem 1. Mapping the CM torsor (50 points)

Let \mathcal{O} be an imaginary quadratic order of discriminant D, and let $p>3$ be a prime that splits completely in the ring class field of \mathcal{O}, equivalently, a prime of the form $4 p=t^{2}-v^{2} D$. As explained Lecture 18, the set

$$
\operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)=\left\{j\left(E / \mathbb{F}_{p}\right): \operatorname{End}(E) \simeq \mathcal{O}\right\}
$$

is a $\operatorname{cl}(\mathcal{O})$-torsor. This means that for any pair $j_{1}, j_{2} \in \operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$, there is a unique $\alpha \in \operatorname{cl}(\mathcal{O})$ for which $\alpha j_{1}=j_{2}$. This has many implications, two of which we explore in this problem.

First and foremost, the $\operatorname{cl}(\mathcal{O})$-action can be used to enumerate the set $\operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$, all we need is a starting point $j_{0} \in \operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$. In this problem we will "cheat" and use the Hilbert class polynomial $H_{D}(X)$ to do this (in Problem Set 11 we will find a starting point ourselves). The polynomial $H_{D}(X)$ splits completely in $\mathbb{F}_{p}[X]$, and its roots are precisely the elements of $\operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$. We could enumerate $\operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ by factoring $H_{D}(X)$ completely, but that would not let us "map the torsor". We want to construct an explicit bijection from $\operatorname{cl}(\mathcal{O})$ to $\operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ that is compatible with the group action.

Let us start with a simple example, using $D=-1091$. In this case the class number $h(D)=17$ is prime, so $\mathrm{cl}(D)$ is cyclic and every non-trivial element is a generator. For our generator, let α be the class of the prime form $(3,1,91)$, which acts on $E l_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ via cyclic isogenies of degree 3: each $j \in \operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ is 3 -isogenous -1 to the j-invariant αj. This means that $\Phi_{3}(j, \alpha j)=0$ for all $j \in \operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$, where $\Phi_{3}(X, Y)=0$ is the modular equation for $X_{0}(3)$.

To enumerate $\operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ as $j_{0}, j_{1}, j_{2}, \ldots$, with $j_{k}=\alpha^{k} j_{0}$, we start by identifying j_{1} is a root of the univariate polynomial $\Phi_{3}\left(j_{0}, Y\right)$. Now $\left(\frac{D}{3}\right)=1$ in this case, so by part (d) of problem 3 on Problem Set 10 there are two ideals of norm 3 in $\operatorname{cl}(D)$, both of which act via 3 -isogenies; the other one corresponds to the form ($3,-1,91$), the inverse of α in $\operatorname{cl}(\mathcal{O})$. Thus there are at least two roots of $\Phi_{3}\left(j_{0}, Y\right)$ in \mathbb{F}_{p}, but provided that we pick the prime p so that 3 does not divide v, there will be only two \mathbb{F}_{p}-rational roots.

There are methods to determine which of of these two roots "really" corresponds to the action of α, but for now we disregard the distinction between α and α^{-1}; this

[^0]ultimately depends on how we embed $\mathbb{Q}(\sqrt{-1091})$ into \mathbb{C} in any case. Let us arbitrarily designate one of the \mathbb{F}_{p}-rational roots of $\Phi_{3}\left(j_{0}, Y\right)$ as j_{1}. To determine j_{2}, we now consider the \mathbb{F}_{p}-rational roots of $\Phi_{3}\left(j_{1}, Y\right)$. Again there are exactly two, but we already know one of them: j_{0} must be a root, since $\Phi_{3}(X, Y)=\Phi_{3}(Y, X)$. So we can unambiguously identify j_{2} as the other \mathbb{F}_{p}-rational root of $\Phi_{3}\left(j_{1}, Y\right)$, equivalently, the unique \mathbb{F}_{p}-rational root of $\Phi_{3}\left(j_{1}, Y\right) /\left(Y-j_{0}\right)$.
(a) Let $D=-1091$, and let t be the least odd integer greater than $1000 N$ for which $p=\left(t^{2}-D\right) / 4$ is prime, where N is the last three digits of you student ID. Use the Sage function hilbert_class_polynomial to compute $H_{D}(X)$, then pick a root j_{0} of $H_{D}(X)$ in \mathbb{F}_{p} (you will need to coerce H_{D} into the polynomial ring $\mathbb{F}_{p}[X]$ to do this). Using the function isogeny_nbrs implemented in the Sage worksheet 18.783 Isogeny Neighbors.sagews, enumerate the set $\mathrm{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ as $j_{0}, j_{1}, j_{2}, \ldots$ by walking a cycle of 3 -isogenies starting from j_{0}, as described above, so that $j_{k}=\alpha^{k} j_{0}$
(assuming that your arbitrary choice of j_{1} was in fact $j_{1}=\alpha j_{0}$). You should find that the length of this cycle is 17 , because α has order 17 in $\mathrm{cl}(D)$. Finally, verify that the you have in fact enumerated all the roots of $H_{D}(X)$.
(b) Let D, p, and j_{0} be as in part (a), and let $\beta \in \operatorname{cl}(D)$ be the class of the prime form $(7,1,39)$. Compute $k=\log _{\alpha} \beta$. Enumerate $E l_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ again as $j_{0}^{\prime}, j_{1}^{\prime}, j_{2}^{\prime}, \ldots$, starting from the same $j_{0}^{\prime}=j_{0}$ but this time use the action of β, by walking a cycle of 7 isogenies. Rather than choosing j_{1}^{\prime} arbitrarily, choose j_{1}^{\prime} in a way that is consistent with the assumption $j_{1}=\alpha j_{0}$ in part (a): i.e., choose j_{1}^{\prime} so that $j_{1}^{\prime}=\beta j_{0}=\alpha^{k} j_{0}=$ j_{k}. Then verify that for all $m=1,2,3, \ldots, 16$ we have $j_{m}^{\prime}=\beta^{m} j_{0}=\alpha^{k m} j_{0}=j_{k m}$, where the subscript $k m$ is reduced modulo $|\alpha|=17$.

You should find the results of parts (a) and (b) remarkable (astonishing even). A priori, there is no reason to think that there should be a relationship between a cycle of 3 -isogenies and a cycle of 7 -isogenies.

The fact that we can use the modular polynomials Φ_{ℓ} to enumerate the roots of H_{D} is extremely useful. One can enumerate the roots of polynomial whose degree is, say, 10 million, simply by finding roots of polynomials of very small degree (typically one can use Φ_{ℓ} with $\ell<20$). We can also use the CM torsor to find zeros of Φ_{ℓ}, even when ℓ is ridiculously large.
(c) Let ℓ be the least prime greater than $10^{100} N$ for which $\left(\frac{D}{\ell}\right)=1$, where N is the last three digits of your student ID. Determine the \mathbb{F}_{p}-rational roots of $\Phi_{\ell}\left(j_{0}, Y\right)$.

For reference, the total size of the polynomial $\Phi_{\ell} \in \mathbb{Z}[X, Y]$ is roughly $6 \ell^{3} \log \ell$ bits, which is on the order of $10^{1000000}$ bits in the problem you just solved. Even reduced modulo p, it would take more than 10^{10000} bits to write down the coefficients of this polynomial (for comparison, there are fewer than 10^{100} atoms in the universe). This example might seem fanciful, but an isogeny of degree 10^{100} is well within the range that might be of interest in cryptographic applications.

Now for a slightly more complicated example, where the class group is not a cyclic group of prime order. Let $D=-5291$. In this case $h(D)=36$ and the class group $\operatorname{cl}(D)$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 18 \mathbb{Z}$. In Problem 3 of Problem Set 10 you computed a polycyclic presentation $\vec{\alpha}, r(\vec{\alpha}), s(\vec{\alpha})$ for $\operatorname{cl}(D)$, which should involve generators $\vec{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, of norms 3, 5, and 7. If you did not do Problem 3 of Problem Set 10, don't worry, I will post a solution for this part shortly.
(d) Let $D=-5291$, and let t be the least odd integer greater than 1000 N for which $p=\left(t^{2}-D\right) / 4$ is prime, where N is the last three digits of you student ID. Using the polycyclic presentation for $\mathrm{cl}(D)$, enumerate $\mathrm{Ell}_{\mathcal{O}}(D)$ starting from a j-invariant j_{0} obtained as a root of H_{D}. Your enumeration $j_{0}, j_{1}, j_{2}, \ldots, j_{35}$ should have the property that the element $\beta \in \operatorname{cl}(\mathcal{O})$ whose action sends j_{0} to j_{k} satisfies $k=\log _{\alpha} \beta$, subject to the assumption that $j_{1}=\alpha_{1} j_{0}$.

Here are a few tips on part (d). You will compute $j_{0}, \ldots, j_{r_{1}-1}$ using 3 -isogenies, but to compute $j_{r_{1}}$ you will need to compute a 5 -isogeny from j_{0}. When choosing $j_{r_{1}}$ as a root of $\Phi_{5}\left(j_{0}, Y\right)$, make this choice consistent with the assumption $j_{1}=\alpha_{1} j_{0}$ by using the fact that $s_{2}=\log _{\vec{\alpha}} \alpha_{2}^{r_{2}}$ (assuming $s_{2} \neq 0$, which is true in this case). When you go to compute $j_{r_{1}+1}$, you will need to choose a root of $\Phi_{3}\left(j_{r_{1}}, Y\right)$. Here you can make the choice consistent with the fact that $\operatorname{cl}(\mathcal{O})$ is abelian, so the action of $\alpha_{1} \alpha_{2}$ should be the same as the action of $\alpha_{2} \alpha_{1}$. Similar comments apply throughout; any time you start a new isogeny cycle, you have a choice to make, but you can make all of them consistent with your choice of j_{1}.

I don't recommend trying to write a program to make all these choices (this can be done but it is a bit involved), it will be easier and more instructive to work it out by hand, using Sage to enumerate paths of ℓ-isogenies as required (you can use the function isogeny_path in the Sage worksheet 18.783 Isogeny Neighbors.sagews).

Problem 2. Computing Hilbert class polynomials (50 points)

In this problem you will implement an algorithm to compute Hilbert class polynomials using a CRT approach. The plan is to compute H_{D} modulo primes p that split completely in the ring class field for the order \mathcal{O} of discriminant D (primes of the form $4 p=t^{2}-v^{2} D$). By doing this for a sufficiently large set of primes S, we can then use the Chinese remainder theorem to determine the integer coefficients of H_{D}.

We will use primes p that are small enough for us to readily find an element j_{0} of $E l_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ by trial and error. Once we know j_{0}, we can enumerate $E l_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ using a polycyclic presentation for $\operatorname{cl}(\mathcal{O})$, as described in Problem 3 of Problem Set 10. This gives us a list of the roots of $H_{D} \bmod p$, and we can then compute

$$
\begin{equation*}
H_{D}(X)=\prod_{j \in \operatorname{Ell}_{\mathcal{O}\left(\mathbb{F}_{p}\right)}}(X-j) \bmod p \tag{1}
\end{equation*}
$$

(a) Write a program that, given a prime p and an integer t finds an elliptic curve E / \mathbb{F}_{p} satisfying $\# E\left(\mathbb{F}_{p}\right)=p+1 \pm t$. Do this by generating curves E / \mathbb{F}_{p} with random coefficients A and B satisfying $4 A^{3}+27 B^{2} \neq 0$. For each curve, pick a random point $P \in E\left(\mathbb{F}_{p}\right)$ (using the random_point () method), and test whether $(p+1-t) P$ or $(p+1+t) P$ is zero. If not, discard the curve and continue. Otherwise, compute the order m of P using the generic fast order algorithm provided by the Sage function sage.groups.generic.order_from_multiple. If $m>4 \sqrt{p}$ than $\# E\left(\mathbb{F}_{p}\right)$ must be $p+1 \pm t$, and we have a curve we can use. Otherwise, discard it and continue.

Having found a curve E / \mathbb{F}_{p} whose Frobenius endomorphism π has trace $\pm t$, where $4 p=t^{2}-v^{2} D$, then $\mathbb{Z}[\pi]$ and $\operatorname{End}(E)$ must lie in the maximal order of $K=\mathbb{Q}(\sqrt{D})$.

Assuming that D is fundamental, the order \mathcal{O} we are interested in is the maximal order \mathcal{O}_{K}, but unless $\mathbb{Z}[\pi]=\mathcal{O}_{K}$ it is unlikely that $\operatorname{End}(E)=\mathcal{O}_{K}$. On the next problem set we will see how to find a curve isogenous to E with endomorphism \mathcal{O}, but for now we will simply choose primes p that have $v=1$, in which case $\mathbb{Z}[\pi]=\operatorname{End}(E)=\mathcal{O}_{K}$ must hold..$\underline{2}$ With this provision, part 1 gives us an element $j_{0} \in \operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$, namely, $j_{0}=j(E)$. We can then enumerate $\operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ as in Problem 3 of Problem Set 10 and apply (1) to compute $H_{D}(X) \bmod p$.

Once we have computed $H_{D} \bmod p$ for all the primes in S, we need to apply the Chinese remainder theorem to compute $H_{D} \in \mathbb{Z}[X]$. Let $S=p_{1}, \ldots, p_{n}$ be the primes in S, and let $M=\prod_{p \in S} p$. Let $M_{i}=M / p_{i}$, and let $a_{i} M_{i} \equiv 1 \bmod p_{i}$. Let c denote a coefficient of H_{D}, and let $c_{i}=c \bmod p$ be the corresponding coefficient of $H_{D} \bmod p$. Then

$$
\begin{equation*}
c \equiv \sum_{i=1}^{n} c_{i} a_{i} M_{i} \bmod M \tag{2}
\end{equation*}
$$

Provided that M is big enough, say $M \geq 2 B$, where B is an upper bound on $|c|$, this congruence uniquely determines the integer c. For Hilbert class polynomial we have very accurate bounds B on the absolute values of their coefficients that can be derived analytically.
(b) Write a program to compute the values M_{i} and a_{i} given the set of primes S. These can be most efficiently computed using a product tree approach, but to simplify the implementation, just compute each $M_{i}=M / p_{i}$ and then compute a_{i} as the inverse of M_{i} modulo p_{i}.

As each polynomial $H_{D} \bmod p$ is computed, we will update running totals for each coefficient c, accumulating the sum in (2) as we go. Now that all the ingredients are in place, we are ready to compute a Hilbert class polynomial. We will use the discriminant $D=-131$ with class number $\mathrm{h}(\mathrm{D})=5$. The coefficients of H_{D} have absolute values bounded by $B=2^{110}$.
(c) Let $D=-131$ and $B=2^{110}$ as above. Select a set S of primes of the form $4 p=\left(t^{2}-D\right)$ such that $\prod_{p \in S} p>2 B$, and then compute the integers M_{i} and a_{i} for each $p_{i} \in S$ as in part 2. The class $\operatorname{group} \operatorname{cl}(D)$ is generated by a prime ideal of norm 3, so we can use this as our polycyclic presentation. For each prime p in S do the following:

1. Find $j_{0} \in \operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ using part (a).
2. Enumerate $E l_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ by walking a cycle of 3 -isogenies.
3. Compute $H_{D} \bmod p$ via (1).
4. Update the sum in (2) for each coefficient of H_{D}.

When all the primes $p \in S$ have been processed, for each coefficient of H_{D}, determine the unique integer $c \in[-M / 2, M / 2]$ that satisfies (2), and then output $H_{D}(X)$.
In your answer, include a summary of the computation for the first 3 primes in S, including the j-invariant j_{0}, the enumeration of $\operatorname{Ell}_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ (in order), and the polynomial $H_{D}(X) \bmod p$.

[^1]When debugging your code in part (c), you may find it helpful to use Sage to compute the Hilbert class polynomial and compute its roots in \mathbb{F}_{p}, so that you know exactly the values of $E l l_{\mathcal{O}}\left(\mathbb{F}_{p}\right)$ that you should be getting.

Problem 3. The Gross-Zagier formula for singular moduli (100 points)

The j-invariants of elliptic curves E / \mathbb{C} with complex multiplication are sometimes called singular moduli, since such j-invariants are quite special. As we now know, singular moduli are the roots of Hilbert class polynomials $H_{D}(X)$. A famous result of Gross and Zagier [2] gives a remarkable formula ${ }^{3}$ for the prime factorization of the norm of the difference of two singular moduli arising as roots of two distinct distinct Hilbert class polynomials.

Let D_{1} and D_{2} be two relatively prime fundamental discriminants. To simplify matters, let us assume that $D_{1}, D_{2}<-4$. Define

$$
J\left(D_{1}, D_{2}\right)=\prod_{i=1}^{h_{1}} \prod_{k=1}^{h_{2}}\left(j_{i}-j_{k}\right),
$$

where $h_{1}=h\left(D_{1}\right)$ and $h_{2}=h\left(D_{2}\right)$, and j_{i} and j_{k} range over the roots of the Hilbert class polynomials $H_{D_{1}}(X)$ and $H_{D_{2}}(X)$, respectively.
(a) Prove that $J\left(D_{1}, D_{2}\right)$ is an integer.

Gross and Zagier discovered an explicit formula for the prime factorization of $J\left(D_{1}, D_{2}\right)$. To state it we first define two auxiliary functions.

Let us call a prime p suitable if $\left(\frac{D_{1} D_{2}}{p}\right) \neq-1$, and call a positive integer n suitable if all its prime factors are suitable. For all suitable primes p, let

$$
\epsilon(p)= \begin{cases}\left(\frac{D_{1}}{p}\right) & \text { if } p \nmid D_{1} \\ \left(\frac{D_{2}}{p}\right) & \text { if } p \nmid D_{2} .\end{cases}
$$

where $\left(\frac{D}{p}\right)$ denotes the Kronecker symbol.
(b) Prove that $\epsilon(p)$ is well-defined for all suitable primes p.

We extend ϵ multiplicatively to suitable integers n. For suitable integers m, let

$$
F(m)=\prod_{n n^{\prime}=m} n^{\epsilon\left(n^{\prime}\right)},
$$

where the product is over positive integers n and n^{\prime} whose product is m.
Theorem (Gross-Zagier). With notation as above, we have

$$
J\left(D_{1}, D_{2}\right)^{2}=\prod_{\substack{x^{2}<D_{1} D_{2} \\ x^{2} \equiv D_{1} D_{2} \bmod 4}} F\left(\frac{D_{1} D_{2}-x^{2}}{4}\right)
$$

[^2]Note that the product on the RHS is taken over all integers x (positive and negative) that satisfy the constraints (so each nonzero value of x^{2} occurs twice).
(c) Prove that for every x in the product of the theorem above, $\left(D_{1} D_{2}-x^{2}\right) / 4$ is a suitable integer (so the formula is well-defined).

It is not immediately obvious that the product on the right is actually an integer; in general $F(m)$ need not be. But in fact every $F(m)$ appearing in the product is a (possibly trivial) prime power.
(d) Let m be a positive integer of the form $\left(D_{1} D_{2}-x^{2}\right) / 4$. Prove that $F(m)=1$ unless m can be written in the form:

$$
m=p^{2 a+1} p_{1}^{2 a_{1}} \cdots p_{r}^{2 a_{r}} q_{1}^{b_{1}} \cdots q_{s}^{b_{s}},
$$

where $\epsilon(p)=\epsilon\left(p_{1}\right)=\cdots=\epsilon\left(p_{r}\right)=-1$ and $\epsilon\left(q_{1}\right)=\cdots=\epsilon\left(q_{s}\right)=1$. Prove that in this case we have

$$
F(m)=p^{(a+1)\left(b_{1}+1\right) \cdots\left(b_{s}+1\right)},
$$

and thus if p divides $F(m)$ then p is the only prime dividing m with an odd exponent and $\epsilon(p)=-1$. (Hint: see exercises 13.15 and 13.16 in [1]).
(e) Prove that every prime p dividing $J\left(D_{1}, D_{2}\right)$ satisfies the following:
(i) $\left(\frac{D_{1}}{p}\right) \neq 1$ and $\left(\frac{D_{2}}{p}\right) \neq 1$;
(ii) p divides an integer of the form $\left(D_{1} D_{2}-x^{2}\right) / 4$;
(iii) $p \leq D_{1} D_{2} / 4$.
(f) Implement an algorithm to compute the prime factorization of $\left|J\left(D_{1}, D_{2}\right)\right|$, using the Gross-Zagier theorem and parts 4 and 5 above. Then use your algorithm to compute the prime factorization of $\left|J\left(D_{1}, D_{2}\right)\right|$ for three pairs of distinct discriminants that have class number greater than 4 . Note that you can compute the class number of D in Sage by creating the number field $\mathbb{Q}(\sqrt{D})$ using K.<a>=NumberField (x**2-D) and then calling K.class_number ().
(g) For each of the three pairs of discriminants D_{1} and D_{2} you selected in part 7 do the following:
(i) Construct a set S of primes p_{i} that split completely in the Hilbert class fields of both D_{1} and D_{2} such that $\prod p_{i}>10^{6} \cdot\left|J\left(D_{1}, D_{2}\right)\right|$. The norm_equation function in the Sage worksheet 18.783 Isogeny Neighbors.sagews may be helpful.
(ii) For each prime $p_{i} \in S$, compute $J\left(D_{1}, D_{2}\right) \bmod p_{i}$ directly from its definition by using Sage to find the roots of $H_{D_{1}}(X)$ and $H_{D_{2}}(X)$ modulo p_{i} and computing the product of all the pairwise differences (in Sage, use the hilbert_class_polynomial function to get $H_{D_{1}}, H_{D_{2}} \in \mathbb{Z}[X]$ then coerce them into $\mathbb{F}_{p}[X]$ to find their roots).
(iii) Use the Chinese remainder theorem to compute $J\left(D_{1}, D_{2}\right) \in \mathbb{Z}$, as explained in Problem 2 above (be sure to get the sign right). Verify that your results agree with your computations in part (f).

Problem 4. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10 according to how interesting you found it ($1=$ "mind-numbing," $10=$ "mind-blowing"), and how difficult you found it ($1=$ "trivial," $10=$ "brutal"). Also estimate the amount of time you spent on each problem to the nearest half hour.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			
Problem 3			

Please rate each of the following lectures that you attended, according to the quality of the material ($1=$ "useless", $10=$ "fascinating"), the quality of the presentation ($1=$ "epic fail", $10=$ "perfection"), the pace ($1=$ "way too slow", $10=$ "way too fast", $5=$ "just right") and the novelty of the material ($1=$ "old hat", $10=$ "all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
$4 / 23$	The modular equation				
$4 / 28$	Main theorem of CM				

Please feel free to record any additional comments you have on the problem sets or lectures, in particular, ways in which they might be improved.

References

[1] David A. Cox, Primes of the form $x^{2}+n y^{2}$: Fermat, class field theory, and complex multiplication, second edition, Wiley, 2013.
[2] B. Gross and D. Zagier, On singular moduli, J. Reine Angew. Math. (Crelles Journal) 355 (1984), 191-220.

MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ When we say that j_{1} and j_{2} are 3-isogenous, we are referring to isomorphism classes of elliptic curves over $\overline{\mathbb{F}}_{p}$. There are 3 -isogenous curves E_{1} / \mathbb{F}_{p} and E_{2} / \mathbb{F}_{p} with $j_{1}=j\left(E_{1}\right)$ and $j_{2}\left(E_{2}\right)$, but one must be careful to choose the correct twists.

[^1]: ${ }^{2}$ We should note that with $v=1$ fixed, we cannot actually prove that any such primes exist (even under the GRH), so this restriction does not yield a true algorithm. But it works.

[^2]: ${ }^{3}$ This is not the Gross-Zagier formula, it is their second most famous formula. The Gross-Zagier formula concerns the heights of Heegner points and is related to the Birch and Swinnerton-Dyer conjecture.

