18.726 Algebraic Geometry Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) Projective morphisms, part 1 (updated 3 Mar 08)

We now describe projective morphisms, starting over an affine base.

1 Proj of a graded ring

The construction of Proj of a graded ring was assigned as an exercise; let me now recall the result of that exercise.

Let $S = \bigoplus_{n=0}^{\infty} S_n$ be a graded ring, i.e., a ring such that each S_n is closed under addition, and $S_m S_n \subseteq S_{m+n}$. An element of S_n is said to be homogeneous of degree n; the elements of S_0 form a subring of S, and each S_n is an S_0 -module. (One could also define a graded ring to allow negative degrees; on the few occasions where I'll need that construction, I'll call it a graded ring with negative degrees.) Let S^+ denote the ideal $\bigoplus_{n=1}^{\infty} S_n$.

Let Proj S be the set of all homogeneous prime ideals of S not containing S_+ . For each positive integer n and each $f \in S_n$, we may view the localization S_f as a graded ring with negative degrees, by placing g/f^k in degree m - kn whenever $g \in S_m$. We may then identify the set

$$D(f) = \{ \mathfrak{p} \in \operatorname{Proj} S : f \notin \mathfrak{p} \}$$

with Spec $S_{f,0}$, where $S_{f,0}$ is the degree zero subring of S_f . These glue to equip Proj S with the structure of a scheme (note that $D(f) \cap D(g) = D(fg)$). In the case $S = A[x_0, \ldots, x_n]$ where each of x_0, \ldots, x_n is homogeneous of degree 1, this simply produces the projective space \mathbb{P}^n_A .

Any morphism $S \to T$ of graded rings induces a morphism $\operatorname{Proj} T \to \operatorname{Proj} S$ of schemes. For example, we say an ideal I of S is *homogeneous* if as abelian groups we have

$$I = \bigoplus_{n=0}^{\infty} (I \cap S_n).$$

In other words, if we split each element of I into homogeneous components, the components themselves belong to I. Then S/I may also be viewed as a graded ring, the projection $S \to S/I$ induces a morphism $\operatorname{Proj} S/I \to \operatorname{Proj} S$, and this morphism is a closed immersion (as we see immediately by checking on a D(f)).

Beware that the scheme $\operatorname{Proj} S$ does not by itself determine the graded ring S. For instance, omitting S_1 gives another graded ring with the same Proj . We'll come back to this point later.

More generally, if $M = \bigoplus_{n=-\infty}^{\infty}$ is a graded *S*-module, i.e., $S_m M_n \subseteq M_{m+n}$ for all m, n, we can convert M into a quasicoherent sheaf \tilde{M} on Proj S by doing so on each D(f) (using the degree-zero subset of M_f) and then glueing. For a converse, see below.

2 The sheaf $\mathcal{O}(1)$

For S a graded ring, n a nonnegative integer, and M a graded S-module, let M(n) denote the shifted module

$$M(n)_i = M_{n+i}.$$

Let $\mathcal{O}_X(n)$ be the quasicoherent sheaf on $X = \operatorname{Proj} S$ defined by the graded module S(n). In particular, $\mathcal{O}_X(0) = \mathcal{O}_X$. More generally, for any quasicoherent sheaf \mathcal{F} of \mathcal{O}_X -modules, put $\mathcal{F}(n) = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(n)$.

Lemma. Suppose that S is generated by S_1 as an S_0 -algebra. Then the sheaves $\mathcal{O}_X(n)$ on Proj S are locally free of rank 1, and $\mathcal{O}_X(m) \otimes_{\mathcal{O}_X} \mathcal{O}_X(n)$ is canonically isomorphic to $\mathcal{O}_X(m+n)$.

Proof. See Hartshorne, Proposition II.5.12.

Note: a quasicoherent sheaf \mathcal{F} on a locally ringed space X which is locally free of rank 1 is also called an *invertible sheaf*. That is because there is a unique sheaf \mathcal{F}^{\vee} such that $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{F}^{\vee} \cong \mathcal{O}_X$, the *dual* of X (exercise). In this case, the dual of $\mathcal{O}_X(n)$ is in fact $\mathcal{O}_X(-n)$.

This gives us an explanation for what x_0, \ldots, x_n are on the projective space $\operatorname{Proj} A[x_0, \ldots, x_n]$: they are global sections not of the sheaf \mathcal{O}_X , but rather of the sheaf $\mathcal{O}_X(1)$.

Theorem 1. Suppose that S is finitely generated by S_1 as an S_0 -algebra. Then each quasicoherent sheaf on Proj S can be written as \tilde{M} for a canonical choice of M.

The finitely generated hypothesis is needed to ensure that $\operatorname{Proj} S$ is quasicompact; we will impose it pretty consistently hereafter.

Proof. Let \mathcal{F} be a quasicoherent sheaf on M. Then the module we want is

$$\Gamma_*(\mathcal{F}) = \bigoplus_{n \in \mathbb{Z}} \Gamma(X, \mathcal{F}(n)),$$

where

$$\mathcal{F}(n) = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(n).$$

For the rest of the proof, see Hartshorne, Proposition II.5.15.

Beware that this does not imply that $S = \bigoplus_{n=0}^{\infty} \Gamma(X, \mathcal{O}_X(n))$ in general. For a stupid example, take S = A[x], in which case the sheaves $\mathcal{O}_X(n)$ are all free and so $\Gamma(X, \mathcal{O}_X(n)) \neq 0$ even when n < 0. For less stupid examples, see Hartshorne exercise II.5.14. However, the following is true.

Lemma. Let $n \ge 1$ be an integer. For $S = A[x_0, \ldots, x_n]$ with the usual grading (by total degree), we have

$$S = \bigoplus_{n=0}^{\infty} \Gamma(X, \mathcal{O}_X(n)).$$

Proof. Exercise, or see Hartshorne Proposition II.5.13.

3 Closed subschemes of projective spaces

Proposition. For $n \ge 1$, any closed immersion into \mathbb{P}^n_A is defined by some homogeneous ideal of $A[x_0, \ldots, x_n]$.

Proof. In fact, there is a canonical way to pick out the ideal. Let \mathcal{I} be the ideal sheaf defining the closed immersion; then $\Gamma_*(\mathcal{I})$ is an ideal of $\Gamma_*(\mathcal{O}_X)$, but we already identified the latter with $S = A[x_0, \ldots, x_n]$. (This identification uses the fact that S is finitely generated by S_1 as an S_0 -algebra, in order to invoke the previous theorem. In fact, it is part of the proof of that theorem; see Hartshorne Proposition II.5.13.)

In general, there may be multiple homogeneous ideals defining the same closed subscheme of \mathbb{P}^n_A . If we start with an ideal I, pass to the closed subscheme, then use the previous proposition to get back, we get the *saturation* of I, namely, the set of all elements $f \in$ $A[x_0, \ldots, x_n]$ such that $x_0^j f, \ldots, x_n^j f \in I$ for some nonnegative integer j. We thus obtain a one-to-one correspondence between closed subschemes of \mathbb{P}^n_A and *saturated* (equal to their saturation) homogeneous ideals.

Corollary. For $n \ge 1$, let I be a homogeneous ideal of $S = A[x_0, \ldots, x_n]$. The following conditions are equivalent.

- (a) The subscheme of \mathbb{P}^n_A defined by I is empty.
- (b) The saturation of I equals S^+ .
- (c) For some n_0 , we have $S_n \subseteq I$ for all $n \ge n_0$.

Proof. We just proved the equivalence of (a) and (b). It is clear that (c) implies (b). Let us check that (b) implies (c). Given (b), each $f \in \{x_0, \ldots, x_n\}$ has the property that $x_0^j f, \ldots, x_n^j f \in I$ for some j. In particular, we have $x_0^j, \ldots, x_n^j \in I$ for some j. This in turn implies $S_{(n+1)(j-1)+1} \subseteq I$ since each monomial of degree (n+1)(j-1)+1 is divisible by one of x_0^j, \ldots, x_n^j (pigeonhole principle!).

4 **Projective implies proper**

We are now ready to complete the proof that $f : \mathbb{P}_{\mathbb{Z}}^n \to \operatorname{Spec} \mathbb{Z}$ is proper. Recall that the missing step was to show that f is universally closed, i.e., for any scheme X, the map $\mathbb{P}_X^n \to X$ is closed. It is enough to do this in case $X = \operatorname{Spec} A$ is affine. Moreover, we may assume $n \geq 1$, as the case n = 0 is stupid (because f is an isomorphism).

Let Z be a closed subset of \mathbb{P}_X^n , suppose $z \in X$ is not in the image of Z, and put $k = \kappa(z)$. We must exhibit an open neighborhood U of x in X such that $Z \cap \mathbb{P}_U^n = \emptyset$. Let $I = \bigoplus_{n=0}^{\infty} I_n$ be the saturated homogeneous ideal in $S = A[x_0, \ldots, x_n]$ defining Z. Then $I \otimes_A k$ defines the empty subscheme of $\operatorname{Proj} k[x_0, \ldots, x_n]$, but may not be saturated. Nonetheless, for some m, we have that $I_n \otimes_A k = S_n \otimes_A k$, and so $(S_n/I_n) \otimes_A k = 0$. Since S_n/I_n is a finitely generated A-module, by Nakayama's lemma, $(S_n/I_n) \otimes_A A_{\mathfrak{p}} = 0$ for \mathfrak{p} the prime ideal of A defining z. Again since S_n/I_n is finitely generated, we have $(S_n/I_n) \otimes_A A_g = 0$ for some $g \in A \setminus \mathfrak{p}$. Then $z \in D(g)$ and D(g) is disjoint from the image of Z, proving the claim.

5 What is a projective morphism?

Several authors (Hartshorne, Eisenbud-Harris) define a morphism $f: Y \to X$ to be projective if it is the composition of a closed immersion $Y \to \mathbb{P}^n_X$ with the projection \mathbb{P}^n_X for some nonnegative integer n. This definition is evidently stable under base change, but it is not local on the base! Better to say that such a morphism is globally projective, and to say that fis locally projective if each $x \in X$ admits an open neighborhood U such that $f: Y \times_X U \to U$ is globally projective.

This is not such a serious distinction in practice, as globally projective equals locally projective if X is "not too large". For instance, this occurs if X is itself globally quasiprojective over an affine scheme. (A morphism is globally quasiprojective if it factors as an open immersion followed by a globally projective morphism. Again, this is stable under base change but not local on the base; the version where we force locality on the base is a quasiprojective morphism.)

The definition of *projective* given in EGA is in fact somewhere between locally and globally projective. More on that later. (Warning: Eisenbud-Harris claim that locally projective and projective are the same. They aren't, but counterexamples are rather pathological.)