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18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) 
Projective morphisms, part 1 (updated 3 Mar 08) 

We now describe projective morphisms, starting over an affine base. 

1 Proj of a graded ring 

The construction of Proj of a graded ring was assigned as an exercise; let me now recall the 
result of that exercise. 

Let S = n=0Sn be a graded ring, i.e., a ring such that each Sn is closed under addition, ⊕∞ 

and SmSn ⊆ Sm+n. An element of Sn is said to be homogeneous of degree n; the elements of 
S0 form a subring of S, and each Sn is an S0-module. (One could also define a graded ring 
to allow negative degrees; on the few occasions where I’ll need that construction, I’ll call it 
a graded ring with negative degrees.) Let S+ denote the ideal ⊕∞ 

n=1Sn. 
Let Proj S be the set of all homogeneous prime ideals of S not containing S+. For each 

positive integer n and each f ∈ Sn, we may view the localization Sf as a graded ring with 
negative degrees, by placing g/f k in degree m− kn whenever g ∈ Sm. We may then identify 
the set 

D(f) = {p ∈ Proj S : f /∈ p} 

with Spec Sf,0, where Sf,0 is the degree zero subring of Sf . These glue to equip Proj S with 
the structure of a scheme (note that D(f) ∩ D(g) = D(fg)). In the case S = A[x0, . . . , xn] 
where each of x0, . . . , xn is homogeneous of degree 1, this simply produces the projective 
space Pn 

A. 
Any morphism S → T of graded rings induces a morphism Proj T → Proj S of schemes. 

For example, we say an ideal I of S is homogeneous if as abelian groups we have 

I = ⊕∞ 

n=0(I ∩ Sn). 

In other words, if we split each element of I into homogeneous components, the components 
themselves belong to I. Then S/I may also be viewed as a graded ring, the projection 
S → S/I induces a morphism Proj S/I → Proj S, and this morphism is a closed immersion 
(as we see immediately by checking on a D(f)). 

Beware that the scheme Proj S does not by itself determine the graded ring S. For 
instance, omitting S1 gives another graded ring with the same Proj. We’ll come back to this 
point later. 

More generally, if M = n=−∞ is a graded S-module, i.e., SmMn ⊆ Mm+n for all m, n,⊕∞ 

we can convert M into a quasicoherent sheaf M̃ on Proj S by doing so on each D(f) (using 
the degree-zero subset of Mf ) and then glueing. For a converse, see below. 

1




2 The sheaf O(1) 

For S a graded ring, n a nonnegative integer, and M a graded S-module, let M(n) denote 
the shifted module 

M(n)i = Mn+i. 

Let OX (n) be the quasicoherent sheaf on X = Proj S defined by the graded module S(n). 
In particular, OX (0) = OX . More generally, for any quasicoherent sheaf F of OX -modules, 
put F(n) = F ⊗OX OX (n). 

Lemma. Suppose that S is generated by S1 as an S0-algebra. Then the sheaves OX (n) 
on Proj S are locally free of rank 1, and OX (m) ⊗OX OX (n) is canonically isomorphic to 
OX (m + n). 

Proof. See Hartshorne, Proposition II.5.12. 

Note: a quasicoherent sheaf F on a locally ringed space X which is locally free of rank 
1 is also called an invertible sheaf. That is because there is a unique sheaf F∨ such that 
F⊗OX F

∨ ∼ OX , the dual of X (exercise). = In this case, the dual of OX (n) is in fact OX (−n). 
This gives us an explanation for what x0, . . . , xn are on the projective space Proj A[x0, . . . , xn]: 

they are global sections not of the sheaf OX , but rather of the sheaf OX (1). 

Theorem 1. Suppose that S is finitely generated by S1 as an S0-algebra. Then each quasi-
coherent sheaf on Proj S can be written as M̃ for a canonical choice of M . 

The finitely generated hypothesis is needed to ensure that Proj S is quasicompact; we 
will impose it pretty consistently hereafter. 

Proof. Let F be a quasicoherent sheaf on M . Then the module we want is 

Γ∗(F) = ⊕n∈ZΓ(X,F(n)), 

where 
F(n) = F ⊗OX OX (n). 

For the rest of the proof, see Hartshorne, Proposition II.5.15. 

Beware that this does not imply that S = ⊕∞ 
n=0Γ(X,OX (n)) in general. For a stupid 

example, take S = A[x], in which case the sheaves OX (n) are all free and so Γ(X,OX (n)) 6 0= 
even when n < 0. For less stupid examples, see Hartshorne exercise II.5.14. However, the 
following is true. 

Lemma. Let n ≥ 1 be an integer. For S = A[x0, . . . , xn] with the usual grading (by total 
degree), we have 

S = ⊕∞ 

n=0Γ(X,OX (n)). 

Proof. Exercise, or see Hartshorne Proposition II.5.13. 
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3 Closed subschemes of projective spaces 

Proposition. For n ≥ 1, any closed immersion into Pn is defined by some homogeneous A 

ideal of A[x0, . . . , xn]. 

Proof. In fact, there is a canonical way to pick out the ideal. Let I be the ideal sheaf defining 
the closed immersion; then Γ∗(I) is an ideal of Γ∗(OX ), but we already identified the latter 
with S = A[x0, . . . , xn]. (This identification uses the fact that S is finitely generated by S1 

as an S0-algebra, in order to invoke the previous theorem. In fact, it is part of the proof of 
that theorem; see Hartshorne Proposition II.5.13.) 

In general, there may be multiple homogeneous ideals defining the same closed subscheme 
of Pn If we start with an ideal I, pass to the closed subscheme, then use the previous A. 
proposition to get back, we get the saturation of I, namely, the set of all elements f ∈ 
A[x0, . . . , xn] such that xj 

0f, . . . , xj
n f ∈ I for some nonnegative integer j. We thus obtain a 

one-to-one correspondence between closed subschemes of Pn and saturated (equal to their A 

saturation) homogeneous ideals. 

Corollary. For n ≥ 1, let I be a homogeneous ideal of S = A[x0, . . . , xn]. The following 
conditions are equivalent. 

(a) The subscheme of Pn defined by I is empty. A 

(b) The saturation of I equals S+ . 

(c) For some n0, we have Sn ⊆ I for all n ≥ n0. 

Proof. We just proved the equivalence of (a) and (b). It is clear that (c) implies (b). Let 
us check that (b) implies (c). Given (b), each f ∈ {x0, . . . , xn} has the property that 
xj 

0f, . . . , xj
n f ∈ I for some j. In particular, we have xj 

0, . . . , x
j
n ∈ I for some j. This in turn 

implies S(n+1)(j−1)+1 ⊆ I since each monomial of degree (n + 1)(j − 1) + 1 is divisible by one 

of x0
j , . . . , xn

j (pigeonhole principle!). 

4 Projective implies proper 

We are now ready to complete the proof that f : P
n 
Z → Spec Z is proper. Recall that 

the missing step was to show that f is universally closed, i.e., for any scheme X, the map 
P

n → X is closed. It is enough to do this in case X = Spec A is affine. Moreover, we may X 

assume n ≥ 1, as the case n = 0 is stupid (because f is an isomorphism). 
Let Z be a closed subset of Pn

X , suppose z ∈ X is not in the image of Z, and put k = κ(z). 
We must exhibit an open neighborhood U of x in X such that Z ∩ P

n = ∅. Let I = ⊕∞ 
U n=0In 

be the saturated homogeneous ideal in S = A[x0, . . . , xn] defining Z. Then I ⊗A k defines 
the empty subscheme of Proj k[x0, . . . , xn], but may not be saturated. Nonetheless, for some 
m, we have that In ⊗A k = Sn ⊗A k, and so (Sn/In) ⊗A k = 0. 
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Since Sn/In is a finitely generated A-module, by Nakayama’s lemma, (Sn/In)⊗A Ap = 0 
for p the prime ideal of A defining z. Again since Sn/In is finitely generated, we have 
(Sn/In) ⊗A Ag = 0 for some g ∈ A \ p. Then z ∈ D(g) and D(g) is disjoint from the image 
of Z, proving the claim. 

5 What is a projective morphism? 

Several authors (Hartshorne, Eisenbud-Harris) define a morphism f : Y → X to be projective 
if it is the composition of a closed immersion Y → Pn with the projection Pn for some X X 

nonnegative integer n. This definition is evidently stable under base change, but it is not 
local on the base! Better to say that such a morphism is globally projective, and to say that f 
is locally projective if each x ∈ X admits an open neighborhood U such that f : Y ×X U → U 
is globally projective. 

This is not such a serious distinction in practice, as globally projective equals locally 
projective if X is “not too large”. For instance, this occurs if X is itself globally quasiprojective 
over an affine scheme. (A morphism is globally quasiprojective if it factors as an open 
immersion followed by a globally projective morphism. Again, this is stable under base 
change but not local on the base; the version where we force locality on the base is a 
quasiprojective morphism.) 

The definition of projective given in EGA is in fact somewhere between locally and glob
ally projective. More on that later. (Warning: Eisenbud-Harris claim that locally projective 
and projective are the same. They aren’t, but counterexamples are rather pathological.) 
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