18.725: EXERCISE SET 8

DUE THURSDAY NOVEMBER 6

(1) Assume the characteristic of k is not 2 . Let $b: X \rightarrow \mathbb{A}^{2}$ be the blow-up of \mathbb{A}^{2} at the origin $(0,0)$, and let $U=\mathbb{A}^{2}-\{(0,0)\}$.
(i) Show that the morphism $b^{-1}(U) \rightarrow U$ is an isomorphism.
(ii) If $Z \subset \mathbb{A}^{2}$ is a closed subset not equal to $\{(0,0)\}$, the strict transform of Z is defined to be the closure of $Z \cap U$ in X, where $Z \cap U$ is viewed as a subset of X via the isomorphism in (i). Compute the strict transform of $V(x y) \subset \mathbb{A}^{2}$.
(iii) Compute the strict transform of $V\left(y^{2}-x^{2}(x+1)\right) \subset \mathbb{A}^{2}$.
(2) Let X be a variety and $x \in X$ a point. Denote by $\mathfrak{m}_{x} \subset \mathcal{O}_{X, x}$ the maximal ideal of the local ring $\mathcal{O}_{X, x}$. Since the residue field of $\mathcal{O}_{X, x}$ is k, the quotient $\mathfrak{m} / \mathfrak{m}^{2}$ is a k-vector space. Show that

$$
\operatorname{dim}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}\right) \geq \operatorname{dim}(X)
$$

Show that if $\mathcal{O}_{X, x}$ is a regular local ring, then this in fact is an equality.
(3) Let $f: X \rightarrow Y$ be a non-constant finite morphism of varieties with $\operatorname{dim}(X)=\operatorname{dim}(Y)=1$. Fix a point $y \in Y$ and let x_{1}, \ldots, x_{r} be the points in $f^{-1}(y)$. Assume that the local rings $\mathcal{O}_{Y, y}$ and $\left\{\mathcal{O}_{X, x_{i}}\right\}_{i=1}^{r}$ are all regular. For each x_{i}, let $e\left(x_{i}\right)$ denote the dimension of the k-vector space $\mathcal{O}_{X, x_{i}} / \mathfrak{m}_{y} \mathcal{O}_{X, x_{i}}$. Show that

$$
[k(X): k(Y)]=\sum_{i=1}^{r} e\left(x_{i}\right) .
$$

(4) A morphism of varieties $f: X \rightarrow Y$ is said to be projective if for some n there is a factorization of f

$$
X \xrightarrow{j} \mathbb{P}^{n} \times Y \xrightarrow{p_{2}} Y,
$$

where j identifies X with an irreducible closed subvariety of $\mathbb{P}^{n} \times Y$.
(i) Show that a projective morphism is closed.
(ii) If Y is affine, show that any finite morphism $f: X \rightarrow Y$ is projective.
(5) Suppose the characteristic of k is $p>0$. On an earlier homework, we saw an example of a morphism of varieties $f: X \rightarrow Y$ which was not an isomorphism but was a homeomorphism on the underlying topological spaces.
(i) Let Y be an affine variety, and let $f: X \rightarrow Y$ be a morphism of varieties whose map on underlying spaces is a homeomorphism. Show that X is affine.
(ii) Let R be the coordinate ring of Y, and let X be a second affine variety with coordinate ring S. Let $f: X \rightarrow Y$ be a morphism associated to a map of rings $f^{*}: R \rightarrow S$. Give
necessary and sufficient conditions on the map f^{*} for the morphism f to be a homeomorphism on the underlying topological spaces.
(6) Let $X \subset \mathbb{A}^{3}$ be the zero locus of $z^{2}-x y$.
(i) Show that $\operatorname{dim}(X)=2$.
(ii) Find a closed subvariety $W \subset X$ of codimension 1 which is not of the form $V(g)$ for some $g \in \Gamma\left(X, \mathcal{O}_{X}\right)$.
(7) Fix positive integers N and r, and let

$$
F:(\text { varieties }) \longrightarrow(\text { Set })
$$

be the contravariant functor which to any variety Y associates the set of polynomials in $\Gamma\left(Y, \mathcal{O}_{Y}\right)\left[X_{1}, \ldots, X_{r}\right]$ of degree N. If $g: W \rightarrow Y$ is a morphism of varieties, then the map $F(Y) \rightarrow F(W)$ is the one induced by the map

$$
\Gamma\left(Y, \mathcal{O}_{Y}\right)\left[X_{1}, \ldots, X_{r}\right] \longrightarrow \Gamma\left(W, \mathcal{O}_{W}\right)\left[X_{1}, \ldots, X_{r}\right]
$$

induced by g^{*}. Show that F is representable. In other words, there exists a variety M and an isomorphism of functors $h_{M} \simeq F$, where h_{M} is the functor sending Y to $\operatorname{Hom}(Y, M)$.

