18.725: EXERCISE SET 8

DUE THURSDAY NOVEMBER 6

(1) Assume the characteristic of k is not 2. Let $b : X \to \mathbb{A}^2$ be the blow-up of \mathbb{A}^2 at the origin (0,0), and let $U = \mathbb{A}^2 - \{(0,0)\}$.

(i) Show that the morphism $b^{-1}(U) \to U$ is an isomorphism.

(ii) If $Z \subset \mathbb{A}^2$ is a closed subset not equal to $\{(0,0)\}$, the *strict transform* of Z is defined to be the closure of $Z \cap U$ in X, where $Z \cap U$ is viewed as a subset of X via the isomorphism in (i). Compute the strict transform of $V(xy) \subset \mathbb{A}^2$.

(iii) Compute the strict transform of $V(y^2 - x^2(x+1)) \subset \mathbb{A}^2$.

(2) Let X be a variety and $x \in X$ a point. Denote by $\mathfrak{m}_x \subset \mathcal{O}_{X,x}$ the maximal ideal of the local ring $\mathcal{O}_{X,x}$. Since the residue field of $\mathcal{O}_{X,x}$ is k, the quotient $\mathfrak{m}/\mathfrak{m}^2$ is a k-vector space. Show that

$$\dim_k(\mathfrak{m}/\mathfrak{m}^2) \ge \dim(X).$$

Show that if $\mathcal{O}_{X,x}$ is a regular local ring, then this in fact is an equality.

(3) Let $f: X \to Y$ be a non-constant finite morphism of varieties with $\dim(X) = \dim(Y) = 1$. Fix a point $y \in Y$ and let x_1, \ldots, x_r be the points in $f^{-1}(y)$. Assume that the local rings $\mathcal{O}_{Y,y}$ and $\{\mathcal{O}_{X,x_i}\}_{i=1}^r$ are all regular. For each x_i , let $e(x_i)$ denote the dimension of the k-vector space $\mathcal{O}_{X,x_i}/\mathfrak{m}_y \mathcal{O}_{X,x_i}$. Show that

$$[k(X) : k(Y)] = \sum_{i=1}^{r} e(x_i).$$

(4) A morphism of varieties $f: X \to Y$ is said to be *projective* if for some *n* there is a factorization of *f*

$$X \xrightarrow{j} \mathbb{P}^n \times Y \xrightarrow{p_2} Y$$

where j identifies X with an irreducible closed subvariety of $\mathbb{P}^n \times Y$.

(i) Show that a projective morphism is closed.

(ii) If Y is affine, show that any finite morphism $f: X \to Y$ is projective.

(5) Suppose the characteristic of k is p > 0. On an earlier homework, we saw an example of a morphism of varieties $f : X \to Y$ which was not an isomorphism but was a homeomorphism on the underlying topological spaces.

(i) Let Y be an affine variety, and let $f : X \to Y$ be a morphism of varieties whose map on underlying spaces is a homeomorphism. Show that X is affine.

(ii) Let R be the coordinate ring of Y, and let X be a second affine variety with coordinate ring S. Let $f: X \to Y$ be a morphism associated to a map of rings $f^*: R \to S$. Give

Date: October 30, 2003.

necessary and sufficient conditions on the map f^* for the morphism f to be a homeomorphism on the underlying topological spaces.

(6) Let $X \subset \mathbb{A}^3$ be the zero locus of $z^2 - xy$.

(i) Show that $\dim(X) = 2$.

(ii) Find a closed subvariety $W \subset X$ of codimension 1 which is not of the form V(g) for some $g \in \Gamma(X, \mathcal{O}_X)$.

(7) Fix positive integers N and r, and let

 $F : (\text{varieties}) \longrightarrow (\text{Set})$

be the contravariant functor which to any variety Y associates the set of polynomials in $\Gamma(Y, \mathcal{O}_Y)[X_1, \ldots, X_r]$ of degree N. If $g: W \to Y$ is a morphism of varieties, then the map $F(Y) \to F(W)$ is the one induced by the map

 $\Gamma(Y, \mathcal{O}_Y)[X_1, \ldots, X_r] \longrightarrow \Gamma(W, \mathcal{O}_W)[X_1, \ldots, X_r]$

induced by g^* . Show that F is representable. In other words, there exists a variety M and an isomorphism of functors $h_M \simeq F$, where h_M is the functor sending Y to $\operatorname{Hom}(Y, M)$.