18.725: EXERCISE SET 6

DUE THURSDAY OCTOBER 23

(1) Suppose X is an affine variety, and let $\Delta : X \to X \times X$ be the diagonal morphism. Describe explicitly the ring map

$$\Gamma(X \times X, \mathcal{O}_{X \times X}) \longrightarrow \Gamma(X, \mathcal{O}_X).$$

(2) Let X, Y, Z be three prevarieties. Show that there is a natural isomorphism (where the parentheses indicate in which order you do the products

$$(X \times Y) \times Z \simeq X \times (Y \times Z).$$

(3) Let X be the affine line with the origin doubled discussed in class (i.e. two copies of \mathbb{A}^1 glued along $\mathbb{A}^1 - \{0\}$). Describe explicitly the product $X \times X$ and show directly that the diagonal $\Delta(X) \subset X \times X$ is not closed.

(4) Fix a positive integer d, and let $M_0, \ldots, M_N \in k[X_0, \ldots, X_n]$ be all monomials of degree d. The Veronese embedding is the morphism $V_d : \mathbb{P}^n \to \mathbb{P}^N$ defined by

$$V_d(x_0:\cdots:x_n)=(M_0(\underline{x}):\cdots:M_N(\underline{x})).$$

(a) Show that V_d is an isomorphism of \mathbb{P}^n with a closed projective variety in \mathbb{P}^N .

(b) Let $S \subset \mathbb{P}^n$ be a hypersurface defined by a homogeneous polynomial $f \in k[X_0, \ldots, X_n]$ of degree d. Show that $S = V_d^{-1}(H)$ for a unique hyperplane $H \subset \mathbb{P}^N$.

(5) A group pre-variety is a prevariety G together with morphisms $m: G \times G \to G$, $i: G \to G$, and an identity element $e \in G$ such that the underlying set is a group with group law defined by m, i, and e. Show that any group pre-variety is a variety.

(6) A pre-variety X is quasi-affine if it is isomorphic to an open subset of an affine variety. If X is a prevariety and $f \in \Gamma(X, \mathcal{O}_X)$, let X_f be the open set $\{x \in X | f(x) \neq 0\}$. Prove that a pre-variety is quasi-affine if and only if the sets X_f for $f \in \Gamma(X, \mathcal{O}_X)$ form a base for the topology of X.

(7) (Yoneda's lemma). Let \mathcal{C} be a category. For any object $X \in Ob(\mathcal{C})$, let

$$h_X: \mathcal{C} \longrightarrow (\operatorname{Set})$$

be the functor which to any $Y \in \mathcal{C}$ associates $\operatorname{Hom}_{\mathcal{C}}(Y, X)$. Convince yourself (and the grader) that h_X is a functor. Then show that if $Y \in \mathcal{C}$ is a second object, there is a natural bijection

$$\operatorname{Hom}_{\mathcal{C}}(Y, X) \simeq \operatorname{Hom}(h_Y, h_X),$$

where $\operatorname{Hom}(h_Y, h_X)$ is the set of natural transformations of functors $h_Y \to h_X$.

Date: October 16, 2003.

DUE THURSDAY OCTOBER 23

As an illustration, consider \mathbb{A}^n and let $f_1, \ldots, f_n \in k[X_0, \ldots, X_n]$ be some polynomials. Taking \mathcal{C} in the above to be the category of pre-varieties, describe the functor $h_{\mathbb{A}^n}$ and the morphism of functors $h_{\mathbb{A}^n} \to h_{\mathbb{A}^n}$ giving rise to the morphism of varieties

 $\mathbb{A}^n \longrightarrow \mathbb{A}^n, \quad (x_1, \dots, x_n) \mapsto (f_1(\underline{x}), \dots, f_n(\underline{x})).$