### 18.725: EXERCISE SET 4

## DUE THURSDAY OCTOBER 9

(1) Let $X$ be an affine variety, and suppose $Z \subset X$ is a closed subset. Let $\mathcal{I} \subset \mathcal{O}_{X}$ be the presheaf which to each $U \subset X$ associates the set of elements $f \in \mathcal{O}_{X}(U)$ for which $f(x)=0$ for every $x \in U \cap Z$. Show that $\mathcal{I}$ is a sheaf of ideals in $\mathcal{O}_{X}$.
(2) (i) Let $Z \subset \mathbb{A}^{2}$ be the closed subset defined by $x y=1$. Is $Z$ irreducible?
(ii) What about $E \subset \mathbb{A}^{2}$ defined by $y^{2}=x(x-1)(x-\lambda)$, where $\lambda \in k$.
(3) Let $X$ be an affine variety, and let $Y \subset \mathbb{A}^{n}$ be an affine variety. Let $x_{i} \in \Gamma\left(Y, \mathcal{O}_{Y}\right)$ be the function which sends $\left(a_{1}, \ldots, a_{n}\right) \in Y$ to $a_{i}$. Show that a continuous map $f: X \rightarrow Y$ is a morphism if and only if for each $i=1, \ldots, n$ the composite function $x_{i} \circ f: X \rightarrow k$ is in $\Gamma\left(X, \mathcal{O}_{X}\right)$.
(4) Let $X$ be an affine variety such that $\Gamma\left(X, \mathcal{O}_{X}\right)$ is a unique factorization domain. Show that if $f \in \Gamma\left(U, \mathcal{O}_{X}\right)$ for some open $U \subset X$, then there exists $p, q \in \Gamma\left(X, \mathcal{O}_{X}\right)$ such that $q(a) \neq 0$ for each $a \in U$ and $f(a)=p(a) / q(a)$.
(5) Let $D=\left\{x^{2}+y^{2}<1\right\}$ be the unit disc in $\mathbb{R}^{2}$ with the topology induced by the standard topology on $\mathbb{R}^{2}$. Let $F$ be the sheaf on $D$ which to any $U \subset D$ associates the set of differentiable real-valued functions $U \rightarrow \mathbb{R}$. Show that the stalk $F_{(0,0)}$ of $F$ at $(0,0)$ is a local ring. Hint: show that there is a natural surjection $F_{(0,0)} \rightarrow \mathbb{R}$.
(6) Let $X$ be a topological space, and $\left\{U_{i}\right\}$ an open covering of $X$. Suppose given a collection $\left\{\mathcal{F}_{i}\right\}$ of sheaves $\mathcal{F}_{i}$ on $U_{i}$, together with isomorphisms

$$
\begin{equation*}
\varphi_{i j}:\left.\left.\mathcal{F}_{i}\right|_{U_{i} \cap U_{j}} \rightarrow \mathcal{F}_{j}\right|_{U_{i} \cap U_{j}} \tag{0.0.0.1}
\end{equation*}
$$

such that
(1) for each $i, \varphi_{i i}$ is the identity;
(2) for each triple $i, j, k$, the map $\varphi_{i k}$ is equal to $\varphi_{j k} \circ \varphi_{i j}$.

Show that there exists a unique sheaf $\mathcal{F}$ on $X$ together with isomorphisms $\psi_{i}:\left.\mathcal{F}\right|_{U_{i}} \rightarrow \mathcal{F}_{i}$ such tat for each $i$ and $j$, the maps $\psi_{j}$ and $\varphi_{i j} \circ \psi_{i}$ over $U_{i} \cap U_{j}$ are equal.
(7) A prevariety $X$ is called rational if its function field $k(X)$ is isomorphic to the field of fractions $k\left(x_{1}, \ldots, x_{n}\right)$ of a polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ for some $n$. Let $X \subset \mathbb{A}^{4}$ be the hypersurface defined by $w x=y z$. Show that $X$ is rational.
(8) Compute $\Gamma\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}\right)$.

