18.725: FINAL EXAM

DUE WEDNESDAY DECEMBER 10

(1) Show that any complete smooth curve C of genus 2 admits a finite morphism $f: C \to \mathbb{P}^1$ such that the degree of the field extension $k(\mathbb{P}^1) \to k(C)$ is 2. Hint: Look at Ω_C^1 .

(2) Let C be a smooth complete curve and let $P_1, \ldots, P_r \in C$ be some points. Set $U = C - \{P_1, \ldots, P_r\}$. Show that there exists a non-constant $f \in \Gamma(U, \mathcal{O}_C)$.

(3) (i) Let C be a smooth curve which is not complete. Let \overline{C} be the complete smooth curve associated to the field of rational functions k(C). Show that C is naturally identified with an open subset of \overline{C} .

(ii) Combining (2) with (i), show that C is affine. Hint: Use (2) to show that there exists a finite morphism $g: \overline{C} \to \mathbb{P}^1$ such that $g^{-1}(\mathbb{A}^1) = C$. Then show that C is affine with coordinate ring equal to the normalization of k[x] in k(C).

(4) Let $f(x) \in k[x]$ be a polynomial of degree $d \ge 1$ with no multiple roots. Let $C \subset \mathbb{A}^2$ be the affine curve defined by

$$y^2 = f(x)$$

Let \overline{C} be the closure of the image of the map

 $C \longrightarrow \mathbb{P}^{g+2}, \quad [x:y] \mapsto [1:x:x^2:\cdots:x^{g+1}:y].$

(i) Show that \overline{C} is a complete smooth curve and that $\overline{C} \cap U_{X_0 \neq 0} \simeq C$.

(ii) Write $f(x) = a_0 x^d + a_1 x^{d-1} + \dots + a_d$ and let $g(v) = a_0 + a_1 v + \dots + a_{d-1} v^{d-1} + a_d v^d$. Show that \overline{C} has an open cover consisting of the two curves

$$V(y^2-f(x))\subset \mathbb{A}^2, \quad V(w^2-g(v))\subset \mathbb{A}^2.$$

(iii) Let g be the unique integer satisfying $d-3 < 2g \leq d-1$. Show that the curve \overline{C} has genus g.

(5) Extra Credit: You might guess that \mathbb{P}^n should represent the functor

$$F: (\text{varieties}) \longrightarrow (\text{Set})$$

which to any variety X associates the set of rank 1 free $\Gamma(X, \mathcal{O}_X)$ -submodules $L \subset \Gamma(X, \mathcal{O}_X)^{n+1}$. Prove that this guess is incorrect by showing that the above functor F is not representable. Hint: morphisms between varieties can be glued.

Date: December 4, 2003.