18.725: EXERCISE SET 9

DUE THURSDAY NOVEMBER 20

(1) Let $f: X \rightarrow Y$ be a morphism of varieties with X complete. Show that there exists a surjective birational morphism $\pi: X^{\prime} \rightarrow X$ from a projective variety X^{\prime} so that the composite $f^{\prime}:=f \circ \pi$ factors as

$$
X^{\prime} \xrightarrow{j} Y \times \mathbb{P}^{r} \xrightarrow{p_{1}} Y
$$

for some r, where j identifies X^{\prime} with a closed set of $Y \times \mathbb{P}^{r}$.
(2) Let $f: X \rightarrow Y$ be a morphism of varieties with X complete. Show that $f(X) \subset Y$ is closed and that the variety $f(X)$ is complete.
(3) Assume the fact that any closed analytic sub-manifold $\mathcal{X} \subset \mathbb{P}_{\text {an }}^{n}$ is induced by a projective variety $X \subset \mathbb{P}^{n}$ (this fact is difficult and can be found for example in Serre's famous GAGA paper "Géométrie algébrique et géométrie analytique", Ann. Inst. Fourier 6 (1956)). Then show that if X and Y are projective varieties, then any map of analytic spaces $X_{\text {an }} \rightarrow Y_{\text {an }}$ is induced by a map of algebraic varieties $X \rightarrow Y$.
(4) Let $\mathbb{P}^{n} \subset \mathbb{P}^{n+1}$ be a hyperplane and let P be a point not in \mathbb{P}^{n}.
(i) For any point $Q \in \mathbb{P}^{n+1}-P$, show that the line through P and Q meets \mathbb{P}^{n} in exactly one point.
(ii) Define a set map $\pi: \mathbb{P}^{n+1}-P \rightarrow \mathbb{P}^{n}$ by sending Q to the unique point of intersection of the line through P and Q and \mathbb{P}^{n}. Show that π is a morphism.
(5) Let F be the functor on the category of varieties which to any X associates the set $S L_{n}\left(\Gamma\left(X, \mathcal{O}_{X}\right)\right)$. That is, n by n matrices with entries in the ring $\Gamma\left(X, \mathcal{O}_{X}\right)$ and determinant one. Show that F is representable by some variety Y. Then explain why there is a distinguished point $e \in Y$ and a morphism

$$
m: Y \times Y \longrightarrow Y
$$

making Y a group variety (problem set 3). Hint: if you understand Yoneda's lemma this is a very short exercise.
Aside for following problems: Suppose $V \subset \mathbb{P}^{n}$ is a projective variety with homogeneous coordinate ring

$$
R=k\left[X_{0}, \ldots, X_{n}\right] / I(V)=\bigoplus_{d \geq 0} R_{d}
$$

It is known that there is a polynomial $P(t)$, called the Hilbert polynomial of V, such that for some integer d_{0} sufficiently big the dimension of R_{d} is equal to $P(d)$ for all $d \geq d_{0}$. It turns out that the dimension of V is equal to the degree of $P(t)$. The degree of V is defined to be ($\operatorname{dim} V)$! times the leading coefficient of $f(t)$.
(6) Calculate the Hilbert polynomial of $V=\mathbb{P}^{n}$. Verify that $\operatorname{dim} V=n$ and that $\operatorname{deg} V=1$.
(7) Suppose $V \subset \mathbb{P}^{n}$ is equal to $V(f)$ for some $f \in k\left[X_{0}, \ldots, X_{n}\right]$, where f is irreducible and homogeneous of degree e. Calculate the Hilbert polynomial of V and verify that $\operatorname{dim} V=n-1$ and $\operatorname{deg} V=e$.

