18.725: EXERCISE SET 10

DUE TUESDAY DECEMBER 2

(1) Find the singular points of the following curves in \mathbb{A}^2

(i)
$$V(x^2 - x^4 - y^4)$$
,
(ii) $V(x^2y + xy^2 - x^4 - y^4)$.

(2) Show that if X is a variety, then the set of smooth points of X is an open set.

(3) Let C be a complete smooth curve. Show that any non-constant $f \in k(X)$ defines a surjection $\pi_f : C \to \mathbb{P}^1$ such that for any point $p \in \mathbb{P}^1$ the inverse image $\pi_f^{-1}(f)$ is finite.

(4) Let \overline{C} be a complete curve (not necessarily smooth). Let C be the complete smooth curve associated to the function field $k_{\overline{C}}$. Show that there is a natural surjective morphism $C \to \overline{C}$. (5) The purpose of this exercise is to classify all automorphisms of \mathbb{P}^1 . Let PGL_1 denote the quotient of $GL_2(k)$ (2 × 2 invertible matrices with entries in k) by the normal subgroup $k^* \subset GL_2(k)$ consisting of the diagonal matrices. Your task in this exercise is to show that the group of automorphisms of \mathbb{P}^1 is equal to PGL_1 .

To do so, let
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(k)$$
 be a matrix and define a map
 $\mathbb{P}^1 \longrightarrow \mathbb{P}^1, \quad [x:y] \mapsto [ax+by, cx+dy].$

Show that this is a well-defined automorphism. Then show that the induced map $GL_2(k) \to \operatorname{Aut}(\mathbb{P}^1)$ induces an isomorphism of groups $PGL_1 \simeq \operatorname{Aut}(\mathbb{P}^1)$. Hint: classify the k-automorphisms of $k(\mathbb{P}^1) \simeq k(t)$.

(6) Let X be an affine variety, and let Op(X) be the collection of open subsets of X viewed as a category as in class. Let $SOp(X) \subset Op(X)$ be the subcategory of special opens. In other words, the objects of SOp(X) are open sets D(f) for $f \in \Gamma(X, \mathcal{O}_X)$ and a morphism $D(f) \to D(g)$ is just an inclusion. Any sheaf $F : Op(X) \to (Set)$ defines a functor $\overline{F} :$ $SOp(X) \to (Set)$ simply by restricting the functor. Prove the converse. That is, let \overline{F} be a functor

$$\overline{F}: \mathrm{SOp}(X) \longrightarrow (\mathrm{Set})$$

such that if $D(f) = \bigcup_i D(f_i)$ the sequence

$$\overline{F}(D(f)) \to \prod_i \overline{F}(D(f_i)) \Longrightarrow \prod_{i,j} \overline{F}(D(f_i f_j))$$

is exact. Then show that there exists a unique sheaf F on X whose restriction to SOp(X) is \overline{F} .

(7) Let X be a variety. A sheaf of \mathcal{O}_X -modules \mathcal{L} is called an *invertible sheaf* if there exists an open covering $X = \bigcup U_i$ such that \mathcal{L} restricted to each U_i is isomorphic to \mathcal{O}_X viewed as a

Date: November 21, 2003.

DUE TUESDAY DECEMBER 2

module over itself. If \mathcal{L} and \mathcal{M} are two invertible sheaves, let $\mathcal{L} \otimes \mathcal{M}$ be the sheaf associated to the presheaf which to any open U associates the tensor product $\mathcal{L}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{M}(U)$. Show that $\mathcal{L} \otimes \mathcal{M}$ is again an invertible sheaf, and that the operation $(\mathcal{L}, \mathcal{M}) \mapsto \mathcal{L} \otimes \mathcal{M}$ makes the set of isomorphism classes of invertible sheaves into an abelian group.