The Spectral Theorem for Hermitian Matrices

This is the proof that I messed up at the end of class on Nov 15.

For reference: A Hermitian means $A^* = A$. P unitary means $P^*P = I$.

Theorem. Let A be a Hermitian matrix. There is a unitary matrix P such that $A' = P^*AP$ is a diagonal matrix.

Some notation: We think of multiplication by the Hermitian matrix A as a linear operator on the standard Hermitian space $V = \mathbb{C}^n$, and we call that operator T. So A is the matrix of T with respect to the standard basis **E**. The form on V is the standard Hermitian form $\langle v, w \rangle = v^* w$.

Let $\mathbf{B} = (v_1, ..., v_n)$ be a new basis, defined by $\mathbf{B} = \mathbf{E}P$, where P is unitary. The columns of P are the coordinate vectors of the vectors v_i . Since P is unitary, $P^* = P^{-1}$ and $P^*AP = P^{-1}AP$. So $A' = P^*AP$ is the matrix of the operator T with respect to \mathbf{B} . Therefore A and A' have the same eigenvalues.

We note that A' is Hermitian: $A'^* = (P^*AP)^* = P^*A^*P^{**} = P^*AP = A'.$

proof of the theorem. We choose an eigenvector v_1 of A and normalize its length to 1. Let W be the onedimensional subspace $\text{Span}(v_1)$ of V. The matrix of the Hermitian form, restricted to W, is the 1×1 matrix whose unique entry is $\langle v_1, v_1 \rangle = 1$. This matrix is invertible, so $V = W \oplus W^{\perp}$.

We choose an orthonormal basis $(v_2, ..., v_n)$ of W^{\perp} . Then $\mathbf{B} = (v_1, v_2, ..., v_n)$ will be an orthonormal basis of V. Since v_1 is an eigenvector, the matrix of T with respect to **B** will have the block form

$$A' = \begin{pmatrix} \lambda_1 & B\\ 0 & D \end{pmatrix},$$

where D is an $(n-1) \times (n-1)$ matrix, B and 0 are row and column vectors, respectively, and λ_1 is the eigenvalue of v_1 . Since A' is Hermitian, B = 0 and D is Hermitian. It is the matrix that represents the operator T on W^{\perp} . By induction on dimension, we can choose the orthonormal basis $(v_2, ..., v_n)$ of A^{\perp} so that D becomes diagonal. Then A' is also diagonal.

Corollary. The eigenvalues of a Hermitian matrix are real.

proof. With notation as above, the eigenvalues of the matrix A are the same as those of A'. Since A' is Hermitian, its diagonal entries are real, and since A' is diagonal, its diagonal entries are the eigenvalues. \Box

Corollary. The eigenvalues of a real symmetric matrix are real.

proof. A real symmetric matrix is Hermitian.

18.701

MIT OpenCourseWare http://ocw.mit.edu

18.701 Algebra I Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.