The Spectral Theorem for Hermitian Matrices

This is the proof that I messed up at the end of class on Nov 15.
For reference: A Hermitian means $A^{*}=A . \quad P$ unitary means $P^{*} P=I$.
Theorem. Let A be a Hermitian matrix. There is a unitary matrix P such that $A^{\prime}=P^{*} A P$ is a diagonal matrix.

Some notation: We think of multiplication by the Hermitian matrix A as a linear operator on the standard Hermitian space $V=\mathbb{C}^{n}$, and we call that operator T. So A is the matrix of T with respect to the standard basis \mathbf{E}. The form on V is the standard Hermitian form $\langle v, w\rangle=v^{*} w$.

Let $\mathbf{B}=\left(v_{1}, \ldots, v_{n}\right)$ be a new basis, defined by $\mathbf{B}=\mathbf{E} P$, where P is unitary. The columns of P are the coordinate vectors of the vectors v_{i}. Since P is unitary, $P^{*}=P^{-1}$ and $P^{*} A P=P^{-1} A P$. So $A^{\prime}=P^{*} A P$ is the matrix of the operator T with respect to \mathbf{B}. Therefore A and A^{\prime} have the same eigenvalues.

We note that A^{\prime} is Hermitian: $A^{\prime *}=\left(P^{*} A P\right)^{*}=P^{*} A^{*} P^{* *}=P^{*} A P=A^{\prime}$.
proof of the theorem. We choose an eigenvector v_{1} of A and normalize its length to 1 . Let W be the onedimensional subspace $\operatorname{Span}\left(v_{1}\right)$ of V. The matrix of the Hermitian form, restricted to W, is the 1×1 matrix whose unique entry is $\left\langle v_{1}, v_{1}\right\rangle=1$. This matrix is invertible, so $V=W \oplus W^{\perp}$.

We choose an orthonormal basis $\left(v_{2}, \ldots, v_{n}\right)$ of W^{\perp}. Then $\mathbf{B}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ will be an orthonormal basis of V. Since v_{1} is an eigenvector, the matrix of T with respect to \mathbf{B} will have the block form

$$
A^{\prime}=\left(\begin{array}{cc}
\lambda_{1} & B \\
0 & D
\end{array}\right)
$$

where D is an $(n-1) \times(n-1)$ matrix, B and 0 are row and column vectors, respectively, and λ_{1} is the eigenvalue of v_{1}. Since A^{\prime} is Hermitian, $B=0$ and D is Hermitian. It is the matrix that represents the operator T on W^{\perp}. By induction on dimension, we can choose the orthonormal basis $\left(v_{2}, \ldots, v_{n}\right)$ of A^{\perp} so that D becomes diagonal. Then A^{\prime} is also diagonal.
Corollary. The eigenvalues of a Hermitian matrix are real.
proof. With notation as above, the eigenvalues of the matrix A are the same as those of A^{\prime}. Since A^{\prime} is Hermitian, its diagonal entries are real, and since A^{\prime} is diagonal, its diagonal entries are the eigenvalues.

Corollary. The eigenvalues of a real symmetric matrix are real.
proof. A real symmetric matrix is Hermitian.

MIT OpenCourseWare
http://ocw.mit.edu

18.701 Algebra I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

