## Row Rank $=$ Column Rank

This is in remorse for the mess I made at the end of class on Oct 1.
The column rank of an $m \times n$ matrix $A$ is the dimension of the subspace of $F^{m}$ spanned by the columns of $A$. Similarly, the row rank is the dimension of the subspace of the space $F^{n}$ of row vectors spanned by the rows of $A$.

Theorem. The row rank and the column rank of a matrix $A$ are equal.
proof. We have seen that there exist an invertible $m \times m$ matrix $Q$ and an invertible $n \times n$ matrix $P$ such that $A_{1}=Q^{-1} A P$ has the block form

$$
A_{1}=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
$$

where $I$ is an $r \times r$ identity matrix for some $r$, and the rest of the matrix is zero. For this matrix, it is obvious that row rank $=$ column rank $=r$. The strategy is to reduce an arbitrary matrix to this form.

We can write $Q^{-1}=E_{k} \cdots E_{2} E_{1}$ and $P=E_{1}^{\prime} E_{2}^{\prime} \cdots E_{\ell}^{\prime}$ for some elementary $m \times m$ matrices $E_{i}$ and $n \times n$ matrices $E_{j}^{\prime}$. So $A_{1}$ is obtained from $A$ by a sequence of row and column operations. (It doesn't matter whether one does the row operations before the column operations, or mixes them together: The associative law for matrix multiplication shows that $E\left(A E^{\prime}\right)=(E A) E^{\prime}$, i.e., that row operations commute with column operations.)

This being so, it suffices to show that the row ranks and column ranks of a matrix $A$ are equal to those of a matrix of the form $E A$, and also to those of a matrix of the form $A E^{\prime}$. We'll treat the case of a row operation $E A$. The column operation $A E^{\prime}$ can be analyzed in a similar way, or one can use the transpose to change row operations to column operations.

We denote the matrix $E A$ by $A^{\prime}$. Let the columns of $A$ be $C_{1}, \ldots, C_{n}$ and let those of $A^{\prime}$ be $C_{1}^{\prime}, \ldots, C_{n}^{\prime}$. Then $C_{j}^{\prime}=E C_{j}$. Therefore any linear relation among the columns of $A$ gives us a linear relation among the columns of $A^{\prime}$ : If $C_{1} x_{1}+\cdots+C_{n} x_{n}=0$ then

$$
E\left(C_{1} x_{1}+\cdots+C_{n} x_{n}\right)=C_{1}^{\prime} x_{1}+\cdots+C_{n}^{\prime} x_{n}=0
$$

So if $j_{1}, \ldots, j_{r}$ are distinct indices between 1 and $n$, and if the set $\left\{C_{j_{1}}^{\prime}, \ldots, C_{j_{r}}^{\prime}\right\}$ is independent, the set $\left\{C_{j_{1}}, \ldots, C_{j_{r}}\right\}$ must also be independent. This shows that

$$
\operatorname{column} \operatorname{rank}\left(A^{\prime}\right) \leq \operatorname{column} \operatorname{rank}(A)
$$

Because the inverse of an elementary matrix is elementary and $A=E^{-1} A^{\prime}$, we can also conclude that column $\operatorname{rank}(A) \leq \operatorname{column} \operatorname{rank}\left(A^{\prime}\right)$. The column ranks of the two matrices are equal.

Next, let the rows of $A$ be $R_{1}, \ldots, R_{n}$ and let those of $A^{\prime}$ be $R_{1}^{\prime}, \ldots, R_{n}^{\prime}$, and let's suppose that $E$ is an elementary matrix of the first type, that adds $a \cdot$ row $k$ to row $i$. So $R_{j}^{\prime}=R_{j}$ for $j \neq i$ and $R_{i}^{\prime}=R_{i}+a R_{k}$. Then any linear combination of the rows $R_{j}^{\prime}$ is also a linear comination of the rows $R_{j}$. Therefore $\operatorname{Span}\left\{R_{j}^{\prime}\right\} \subset$ $\operatorname{Span}\left\{R_{j}\right\}$, and so row $\operatorname{rank}\left(A^{\prime}\right) \leq \operatorname{row} \operatorname{rank}(A)$. And because the inverse of $E$ is elementary, we obtain the other inequality. Elementary matrices of the other types are treated easily, so the row ranks of the two matrices are equal.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.701 Algebra I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

