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Row Rank = Column Rank 

This is in remorse for the mess I made at the end of class on Oct 1. 

The column rank of an m × n matrix  A is the dimension of the subspace of F m spanned by the columns 
of A. Similarly, the row rank  is the dimension of the subspace of the space F n of row vectors spanned by

the rows of A.


Theorem. The row rank and the column rank of a matrix A are equal.


proof. We have seen that there exist an invertible m × m matrix Q and an invertible n × n matrix P such

that A1 = Q−1AP has the block form   

I 0 
A1 = 

�

0 0 

�

where I is an r × r identity matrix for some r, and the rest of the matrix is zero. For this matrix, it is 
obvious that row rank = column rank = r. The strategy is to reduce an arbitrary matrix to this form. 

We can write Q−1 = Ek · · · E2E1 and P = E� 
1
E� 

2 · · · E
� 
� for some elementary m × m matrices Ei and n × n 

matrices E� 
j . So A1 is obtained from A by a sequence of row and column operations. (It doesn’t matter 

whether one does the row operations before the column operations, or mixes them together: The associative 
law for matrix multiplication shows that E(AE �) = (EA)E�, i.e., that row operations commute with column 
operations.) 

This being so, it suffices to show that the row ranks and column ranks of a matrix A are equal to those 
of a matrix of the form EA, and also to those of a matrix of the form AE � . We’ll treat the case of a row 
operation EA. The column operation  AE � can be analyzed in a similar way, or one can use the transpose 
to change row operations to column operations. 

We denote the matrix EA by A� . Let the columns of A be C1, ..., Cn and let those of A� be C � 
1
, ..., C � 

n. 
Then C � 

j = ECj . Therefore any linear relation among the columns of A gives us a linear relation among the 
columns of A�: If C1x1 + · · · + Cnxn = 0 then 

 E(C � �

1x1 + · · · + Cnxn) = C
1
x1 + · · · + Cn xn = 0. 

So if   j1, ..., jr are distinct indices between 1 and n, and if the set {C �

j1
, ..., C �

 jr 
} is independent, the set 

{Cj1 , ..., Cjr } must also be independent. This shows that 

column rank(A�) � column rank(A). 

Because the inverse of an elementary matrix is elementary and A = E−1A� , we can also conclude that 
column rank(A) � column rank(A�). The column ranks of the two matrices are equal. 

Next, let the rows of A be  R1, ..., Rn and let those of A� be   R� , ..., R�

1 n, and let’s suppose that E is an 
elementary matrix of the first type, that adds a ·   row k to row i. So R�

j = Rj for j = i and R�

i = Ri + aRk.

Then any linear combination of the rows � R is also a linear comination of the rows R . Therefore Span{R� 
j j j } � 

Span{Rj }, and so row rank(A�) � row rank(A). And because the inverse of E is elementary, we obtain the 
other inequality. Elementary matrices of the other types are treated easily, so the row ranks of the two 
matrices are equal. � 
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