Plane Crystallographic Groups with Point Group D_{1}.

This note describes discrete subgroups G of isometries of the plane P whose translation lattice L contains two independent vectors, and whose point group \bar{G} is the dihedral group D_{1}, which consists of the identity and a reflection about the origin. Among the ten possible point groups C_{n} or D_{n} with $n=1,2,3,4,6$, the analysis of D_{1} is among the most complicated. There are three different types of group with this point group.

Let G be a group of the type that we are considering. We choose coordinates so that the reflection in \bar{G} is about the horizontal axis. As in the text, we put bars over symbols that represent elements of the point group \bar{G} to avoid confusing them with the elements of G. So we denote the reflection in \bar{G} by \bar{r}.

The lattice L consists of the vectors v such that t_{v} is in G, and we know that elements of \bar{G} map L to L. If v is in $L, \bar{r} v$ is also in L.

I. The shape of the lattice

Proposition 1. There are horizontal and vertical vectors $a=\left(a_{1}, 0\right)^{t}$ and $b=\left(0, b_{2}\right)^{t}$ respectively, such that, with $c=\frac{1}{2}(a+b), L$ is one of the two lattices L_{1} or L_{2}, where

$$
\begin{array}{ll}
L_{1}=\mathbb{Z} a+\mathbb{Z} b, & \text { is a 'rectangular' lattice, and } \\
L_{2}=\mathbb{Z} a+\mathbb{Z} c, & \text { is a 'triangular' lattice. }
\end{array}
$$

Since $b=2 c-a, L_{1} \subset L_{2}$.
The lattice L_{1} is called 'rectangular' because the horizontal and vertical lines through its points divide the plane into rectangles. The lattice L_{2} is obtained by adding to L_{1} the midpoints of every one of these rectangles. There are two scale parameters in the description of L - the lengths of the vectors a and b. The usual classification of discrete groups disregards these parameters, but the rectangular and isoceles lattices are considered different.
Proof of the proposition. Let $v=\left(v_{1}, v_{2}\right)^{t}$ be an element L not on either coordinate axis. Then $\bar{r} v=\left(v_{1},-v_{2}\right)^{t}$ is in L. So are the vectors $v+\bar{r} v=\left(2 v_{1}, 0\right)^{t}$, and $v-\bar{r} v=\left(0,2 v_{2}\right)^{t}$. These are nonzero horizontal and vertical vectors in L, respectively.
We choose a_{1} to be the smallest positive real number such that $a=\left(a_{1}, 0\right)^{t}$ is in L. This is possible because L contains a nonzero horizontal vector and it is a discrete group. Then the horizontal vectors in L will be integer multiples of a. We choose b_{2} similarly, so that the vertical vectors in L are the integer multiples of $b=\left(0, b_{2}\right)^{t}$, and we let L_{1} be the rectangular lattice $\mathbb{Z} a+\mathbb{Z} b=\{a m+b n \mid m, n \in \mathbb{Z}\}$. Then $L_{1} \subset L$.

Suppose that $L \neq L_{1}$. We choose a vector $v=\left(v_{1}, v_{2}\right)^{t}$ in L and not in L_{1}. It will be a linear combination of the independent vectors a and b, say $v=a x+b y=\left(a_{1} x, b_{2} y\right)^{t}$, with $x, y \in \mathbb{R}$. We write $x=m+x_{0}$ with $m \in \mathbb{Z}$ and $0 \leq x_{0}<1$, and we write $y=b n+y_{0}$ in the analogous way. Then $v=(a m+b n)+\left(a x_{0}+b y_{0}\right)$. The vector $a m+b n$ is in L_{1}. We subtract this vector from v, and are reduced to the case that $v=a x+b y$, with $0 \leq x, y<1$. As we saw above, $\left(2 v_{1}, 0\right)^{t}$ is in L. Since this is a horizontal vector, $2 v_{1}$ is an integer multiple of a_{1}, and since $0 \leq v_{1}<a_{1}$, there are only two possibilities: $v_{1}=0$ or $\frac{1}{2} a_{1}$. Similarly, $v_{2}=0$ or $v_{2}=\frac{1}{2} b_{2}$. Thus v is one of the four vectors $0, \frac{1}{2} a, \frac{1}{2} b, c$. It is not 0 because $v \notin L_{1}$. It is not $\frac{1}{2} a$ because a is a horizontal vector of minimal length in L, and it is not $\frac{1}{2} b$ because b is a vertical vector of minimal length. Thus $v=c$, and $L=L_{2}$.

II. The glides in G.

We recall that the homomorphism $\pi: M \rightarrow O_{2}$ sends an isometry $m=t_{v} \varphi$ to the orthogonal operator φ. The point group \bar{G} is the image of G in O_{2}. So there is an element g in G such that $\pi(g)=\bar{r}$, and $g=t_{u} r$ for some vector $u=\left(u_{1}, u_{2}\right)^{t}$. It is important to keep this in mind: Though $t_{u} r$ is in G, the translation t_{u} by itself needn't be in G.

Lemma 2. Let H be the subgroup of translations t_{v} in G. So $L=\left\{v \mid t_{v} \in H\right\}$, and $H=\left\{t_{v} \mid v \in L\right\}$.
(i) G is the union of two cosets $H \cup H g$, where g can be any element not in H.
(ii) g has the form $t_{u} r$, where $u+\bar{r} u$ is in the subgroup $a \mathbb{Z}$.
(iii) Let L be a lattice of the form L_{1} or L_{2}, and let $H=\left\{t_{v} \mid v \in L\right\}$. Let u be a vector such that $u+\bar{r} u$ is in $a \mathbb{Z}$. Then the set $H \cup H g$ is a discrete subgroup of M.
proof. (i) Let π_{G} denote the restriction of π to G. The kernel of this homomorphism is the group H, and its image \bar{G} contains two elements. Therefore there are two cosets of H in G.
(ii) We compute, using the formula $r t_{u}=t_{\bar{r} u} r$:

$$
\begin{equation*}
g^{2}=t_{u} r t_{u} r=t_{u+\bar{r} u} r^{2}=t_{u+\bar{r} u} \tag{3}
\end{equation*}
$$

This is an element of G, so $u+\bar{r} u$ is a horizontal vector in L, an integer multiple of a.
The verification of (iii) is similar to the computation made in (ii), and we omit it.
We check that the isometry $g=t_{u} r$ is a reflection or a glide with horizontal glide line ℓ defined by $x_{2}=\frac{1}{2} u_{2}$:

$$
t_{u} r\binom{x_{1}}{\frac{1}{2} u_{2}}=t_{u}\binom{x_{1}}{-\frac{1}{2} u_{2}}=\binom{x_{1}+u_{1}}{\frac{1}{2} u_{2}}
$$

So g is a horizontal glide along ℓ, as asserted. The glide vector is $\left(u_{1}, 0\right)^{t}$.
Since the glide line ℓ is horizontal, we can shift coordinates to make it the horizontal axis. This changes the vector u, which becomes the horizontal vector $\left(u_{1}, 0\right)^{t}$. Then $\bar{r} u=u$, and therefore $g^{2}=t_{2 u}$ (see (3)). So $t_{2 u}$ is in G, and $2 u$ is in L. Since $2 u$ is a horizontal vector, it is an integer multiple of a. We adjust u, multiplying g on the left by a power of t_{a} to make $u=0$ or $\frac{1}{2} a$.
The two dichotomies

$$
L=L_{1} \text { or } L_{2}, \quad \text { and } \quad u=0 \text { or } \frac{1}{2} a,
$$

leave us with four possibilities.
To complete the discussion we must decide whether or not such groups exist, and whether they are different. They do exist, because $H \cup H g$ is a group (Lemma 2 (iii)). And the two types of lattice are considered different. But when the element g we have found is a glide, G might still contain a reflection. This happens when $L=L_{2}$ and $u=\frac{1}{2} a$. In that case, $c=\frac{1}{2}(a+b)$ is in L, and so $t_{-c} g=t_{-\frac{1}{2} b} r$ is an element of G. Because $-\frac{1}{2} b$ is a vertical vector, this motion is a reflection (about the horizontal line $x_{2}=\frac{1}{4} b$). Shifting coordinates once more eliminates this case. This phenomenon doesn't happen when $L=L_{1}$, so we are left with three types of group.
Theorem. Let G be a discrete group of isometries of the plane whose point group is the dihedral group $D_{1}=\{\overline{1}, \bar{r}\}$. Let $H=\left\{t_{v} \in G\right\}$ be its subgroup of translations.
(i) The lattice $L=\left\{v \mid t_{v} \in G\right\}$ has one of the forms L_{1} or L_{2} given in Proposition 1.
(ii) Let $u=\frac{1}{2} a$ and let $g=t_{u} r$. Coordinates in the plane can be chosen so that,
a) if $L=L_{1}, G=H \cup H r$ or $G=H \cup H g$, and
b) if $L=L_{2}, G=H \cup H r$.

MIT OpenCourseWare
http://ocw.mit.edu

18.701 Algebra I

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

