18.336 Numerical Methods for Partial Differential Equations

Fundamental Concepts

Domain $\Omega \subset \mathbb{R}^{n}$ with boundary $\partial \Omega$

$\mathrm{PDE}=$ "partial differential equation"
b.c. $=$ "boundary conditions"
(if time involved, also i.c. $=$ "initial conditions")
Def.: An expression of the form

$$
\begin{equation*}
F\left(D^{k} u(x), D^{k-1} u(x), \ldots, D u(x), u(x), x\right)=0, \quad x \in \Omega \subset \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

is called $k^{\text {th }}$ order PDE,
where $F: \mathbb{R}^{n^{k}} \times \mathbb{R}^{n^{k-1}} \times \ldots \times \mathbb{R}^{n} \times \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ is given, and $u: \Omega \rightarrow \mathbb{R}$ is the unknown.
A function u satisfying (1) is called solution of the PDE.

$$
\begin{array}{ccc}
D u & =\left(u_{x_{1}}, \ldots, u_{x_{n}}\right) & \text { gradient (vector) } \\
D^{2} u & =\left(\begin{array}{lll}
u_{x_{1} x_{1}} & \ldots & u_{x_{1} x_{n}} \\
\vdots & \ddots & \vdots \\
u_{x_{n} x_{1}} & \cdots & u_{x_{n} x_{n}}
\end{array}\right) & \\
\vdots & & \text { Hessian (matrix) } \\
& & \\
& & \text { etc. }
\end{array}
$$

Def.: The PDE (1) is called...
(i) linear, if

$$
\sum_{|\alpha| \leq k} a_{\alpha}(x) D^{\alpha} u=f(x)
$$

homogeneous, if $f=0$
(ii) semilinear, if

$$
\sum_{|\alpha| \leq k} a_{\alpha}(x) D^{\alpha} u+F_{0}\left(D^{k-1} u, \ldots, D u, u, x\right)=0
$$

(iii) quasilinear, if

$$
\sum_{|\alpha| \leq k} a_{\alpha}\left(D^{k-1} u, \ldots, D u, u, x\right) \cdot D^{\alpha} u+F_{0}\left(D^{k-1} u, \ldots, D u, u, x\right)=0
$$

(iv) fully nonlinear, if neither (i), (ii) nor (iii).

Def.: An expression of the form

$$
F\left(D^{k} u(x), D^{k-1} u(x), \ldots, D u(x), u(x), x\right)=0, \quad x \in \Omega \subset \mathbb{R}^{n}
$$

is called $k^{t h}$ order system of PDE,
where $F: \mathbb{R}^{m n^{k}} \times \mathbb{R}^{m n^{k-1}} \times \ldots \times \mathbb{R}^{m n} \times \mathbb{R}^{m} \times \Omega \rightarrow \mathbb{R}^{m}$
and $u: \Omega \rightarrow \mathbb{R}^{m}, u=\left(u^{1}, \ldots, u^{m}\right)$.
Typically: $\#$ equations $=\#$ unknowns, i.e. $n=m$.
Some examples:
$u_{t}+u_{x}=0$ linear advection equation
$u_{t}=u_{x x} \quad$ heat equation
$u_{x x}=f(x) \quad$ Poisson equation (1D)
$\nabla^{2} u=f \quad$ Poisson equation (nD)
$u_{t}+c u_{x}=D u_{x x} \quad$ convection diffusion equation
$u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0 \Leftrightarrow u_{t}+u u_{x}=0 \quad$ Burgers' equation (quasilinear)
$\nabla^{2} u=u^{2} \quad$ a semilinear PDE
$u_{t t}=u_{x x} \quad$ wave equation (1D)
$\binom{u}{v}_{t}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \cdot\binom{u}{v}_{x} \quad \begin{aligned} & \text { wave equation, written as a system } \\ & u_{t t}=v_{x t}=v_{t x}=u_{x x}\end{aligned}$
$u_{t}+u u_{x}=\epsilon u_{x x x} \quad$ Korteweg-de-Vries equation
$\left\{\begin{array}{l}\vec{u}_{t}+(\vec{u} \cdot \nabla) \vec{u}=-\nabla p+\nu \nabla^{2} \vec{u} \\ \nabla \cdot \vec{u}=0\end{array}\right\} \begin{aligned} & \text { incompressible Navier-Stokes equation } \\ & \text { [dynamic-algebraic system] }\end{aligned}$
$\left\{\begin{array}{l}h_{t}+(u h)_{x}=0 \\ u_{t}+u u_{x}=-g h_{x}\end{array}\right\} \quad \begin{aligned} & \text { shallow water equations } \\ & \text { [system of hyberbolic conservation laws] }\end{aligned}$
$|\nabla u|=1 \quad$ Eikonal equation (nonlinear)

MIT OpenCourseWare
http://ocw.mit.edu

18.336 Numerical Methods for Partial Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

