18.075 In-class Exam \# 3
 December 8, 2004

Justify your answers. Cross out what is not meant to be part of your final answer.
Total number of points: 67.5
I. Consider the ODE

$$
\begin{equation*}
x y^{\prime \prime}-x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

1. (2 pts) Classify the point $x_{0}=0$.
2.(2 pts) Write the ODE in the canonical form

$$
R(x) y^{\prime \prime}+\frac{1}{x} P(x) y^{\prime}+\frac{1}{x^{2}} Q(x) y=0 .
$$

3.(3 pts) Find the indicial exponents s_{1} and s_{2} for this ODE.
4. (8 pts) Obtain a solution to this ODE by the Frobenius method for the largest of the two exponents, s_{1}.
5.(5 pts) How many independent solutions can you find by repeating part (4) for $s=s_{2}$?
6.(4 pts) Give the form of the general solution to the ODE (1) of page 1.
II. Consider the Bessel equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \tag{2}
\end{equation*}
$$

1.(4 pts) Find the general solution to this ODE in terms of elementary functions when $p=1 / 2$.
2.(5 pts) Determine the solution $y(x)$ that satisfies $\underline{y(\pi)=0}$ and $\underline{y^{\prime}(\pi)=1}$ when $p=1 / 2$.
3.(4 pts) Find the general solution to the ODE (2) of page 5 when $p=2$.
4. (5 pts) Determine the solution $y(x)$ that satisfies $\lim _{x \rightarrow 0} y(x)=0$ when $p=2$. Is this solution unique? Explain.
III. Solve the following ODEs in terms of Bessel functions, or elementary functions, if possible. DO NOT use the Frobenius method.

1. (4 pts) $x y^{\prime \prime}-9 y^{\prime}+x y=0$

$$
\text { 2. (4 pts) } x y^{\prime \prime}+\left(1+6 x^{2}\right) y^{\prime}+x\left(2+9 x^{2}\right) y=0
$$

IV. 1. (4.5 pts) Find the Fourier sine series expansion in $[0, \pi]$ of the function defined in $[0, \pi]$ by: $h(x)=-1$ in $[0, \pi / 2]$ and $h(x)=1$ in $(\pi / 2, \pi]$. Sketch the function represented by the sine series in the symmetric interval $[-\pi, \pi]$.
2. (6 pts) Find the Fourier cosine series expansion in $[0, \pi]$ of the function $h(x)$ defined in part (1) of previous page. Sketch the function represented by this cosine series in the symmetric interval $[-\pi, \pi]$.
3. (7 pts) Consider the ODE

$$
\frac{d^{2} y}{d x^{2}}+p^{2} y=h(x), \quad 0<x<\pi
$$

with the boundary conditions $y(0)=0=y(\pi) ; ~ y=$ $y(x)$ is unknown and p is real, $p>0$. Find the solution $y(x)$ of this boundary-value problem as an expansion in suitable Fourier series. For what values of p does the problem have a solution? Hint: Look closely at the boundary conditions and decide whether to use a sine or cosine series (with coefficients to be found), and substitute in the ODE.

