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DAVID

SHIROKOFF:

Hi everyone. Welcome back.

So today we're going to tackle a problem in complex matrices. And specifically,

we're going to look at diagonalizing a complex matrix. So given this matrix A, we're

asked to find its eigenvalue matrix lambda, and its eigenvector matrix S.

And one thing to note about this matrix A is that if we take its conjugate transpose,

it's actually equal to itself. So in Professor Strang's book, he combines this notation

to be superscript H to mean conjugate transpose. So if you were to take the

transpose of this matrix and then conjugate all the elements, you would find that A

equals its conjugate transpose, and we call this property Hermitian.

So I'll let you think about this for a moment and I'll be back in a second.

OK, welcome back. So what's the first step in computing the eigenvectors and

eigenvalues of the matrix is to take a look at the characteristic equation. So

specifically, we take det of A minus lambda i. And quite possibly, the only thing new

with this problem is that the entries of the matrix A are complex.

Now, you may have already seen that lambda's being complex, but we're going to

work this out explicitly. So if I take the determinant, we get det of 2 minus lambda, 3

minus lambda, we have 1 minus i, 1 plus i. We want to set this to 0. This then gives

us a polynomial for lambda. 1 plus i, 1 minus i, set it equal to 0. We can expand out

this term. You get 6 minus 5 lambda plus lambda squared.

These two terms you'll note are complex conjugates of each other. This tends to

make things simple. So we have minus 1 minus i squared is going to give us 2.

Because they're differences of squares, the cross terms involving i cancel, and we

get the characteristic equation. Lambda squared minus 5 lambda plus 4 equals 0.

And specifically, we can factorize this equation. We see that there's roots of minus

1, or factorizes into factors of lambda -1 and lambda -4, which then give us roots of
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lambda is 1 and lambda is 4.

So when one curious point to note is that the eigenvalues are real in this case. 1

and 4 are real, whereas the matrix that we started with was complex. And this is a

general property of Hermitian matrices. So even though they might be complex

matrices, Hermitian matrices always have real eigenvalues.

So this is the first step when asked to diagonalize a matrix. The second step is to

find the eigenvectors. And to do that what we have to do is we have to look at the

cases for lambda equals 1 and lambda is equal 4 separately. So let's first look at the

case of lambda is equal to 1. And specifically, we're going to be looking for a vector

such that A minus lambda i times the vector v is 0. And if we've done things

properly, this matrix A minus lambda i should be singular.

So if we take A minus lambda i, we're going to get 1 1 minus i, 1 plus i 3 minus 1 is

2. And I'll write out components of v, which are v1 and v2. And we want this to be 0.

And you'll note that it's almost always the case that when we work out A minus

lambda i, the second row is going to be a constant multiple of the first row. And this

must be the case because these two rows must be linearly dependent on each

other for the matrix A minus lambda i to be singular.

So if you look at this you might think that these two rows aren't necessarily linearly

independent. But the point is that there's complex numbers involved. And indeed,

actually if we were to multiply this first row by 1 plus lambda, we would get 1 plus

lambda and 2. And you note that that's exactly the second row. So this second row

is actually 1 plus lambda times the first row. So these rows are actually linearly

dependent on each other.

So what values of v1 and v2 can we take? Well we just need to make this top row

multiplied by v1 and v2 equal to 0. And then because the second row is a constant

multiple of the first row, we're automatically guaranteed that the second equation

holds.

So just by looking at it, I'm going to take v1 is equal to 1 minus i, and v2 is negative

2



1. So we see that 1 times 1 minus i minus 1 times 1 minus i is going to give us 0. So

this is one solution. And of course, we can take any constant multiple times this

eigenvector, and that's also going to be an eigenvector.

So I'll just write this out. 1 minus i, minus 1 is the eigenvector for lambda is equal to

1. For lambda is equal to 4, again, A minus lambda i, is going to give us negative 2,

1 minus i, 1 plus i, 3 minus lambda's going to be minus 1. And I'll call this vector u1

and u2. And again, we want u1 and u2 equal to 0-- or sorry, the matrix multiplied by

u1, u2 is equal to 0.

And just by looking at this again, we see that the second row is actually a constant

multiple of the first row. For example, if we were to multiply this row by negative 2,

and this row by 1 plus i, we would see that they're constant multiples of each other.

So I can take u to be, for example, 1, and 1 plus i. How did I get this? Well I just

looked at the second equation because it's a little simpler, and I said well if I have 1

plus I here, I can just say multiply it by 1. And then minus 1 times 1 plus I when I

add them up is going to vanish. So this is how I get the second one.

Now there's something curious going on, and this is going to be another property of

Hermitian matrices. But if you actually take a look at this eigenvector, it will be

orthogonal to this eigenvector when we conjugate the elements and dot the two

vectors together. So this is another very special property of complex Hermitian

matrices.

OK, so the last step now is to construct these matrices lambda and S. Now we

already know what lambda is because it's the diagonal matrix with the eigenvalues 1

and 4. So we have 1 0, 0 and 4. Now I'm going to do something special for S. I've

noted that these two vectors u and v are orthogonal to each other.

So what do I mean by orthogonal? Specifically, if I were to take v conjugate

transpose and multiply it by u, we would end up getting 1 plus i minus 1. This would

be v conjugate transpose. 1, 1 plus i, and we see that when we multiply these out

we get 0.
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So when we have orthogonal eigenvectors, there's a trick that we can do to build up

this matrix S and S inverse. What we can do is we can normalize u and v. So

specifically, we can take any constant multiple of u and v, and it's still going to be an

eigenvector.

So what I'm going to do is I'm going to take u and v and multiply them by their

length. So for example u, the amplitude of its top component is 1. The amplitude of

its bottom component is 2. So notice that the modulus of the complex number 1 plus

I is 2. So we have-- sorry, it's root 2, the complex modulus is root 2. So the

amplitude of the entire vector is root 3. It's 1 plus 2 squared quantity squared

rooted, so it's root 3.

So what we can do is we can build up this matrix S using a normalization factor of 1

over root 3. And I'm going to take the first column is the first eigenvector that

corresponds to eigenvalue 1. And then the second column is the second

eigenvector which corresponds value 4. And the reason I put in this root 3 here is to

make this column unit length 1, and this column unit length 1.

And the reason I do this is because now this matrix S, it's possible to check that this

matrix S is actually unitary, which means that its inverse is actually just equal to it's

conjugate transpose. So this is a very special property of the eigenvectors of a

Hermitian matrix.

And then lastly, I'm just going to write down the diagonalization of A. So if I have A,

because I have its eigenvector matrix S, and its eigenvalue matrix lambda, it's

possible to decompose A into a product of S lambda, S inverse. And because S is

unitary, its inverse is actually its conjugate transpose.

So just to put the pieces together, we have A is equal to S, which is 1 over root 3. 1

minus i, minus 1, 1, 1 plus i times the diagonal matrix 1 0, 0 4 times S inverse, which

is going to be its conjugate transpose. So what I do is I conjugate each element, so

1 minus i becomes 1 plus i and vice versa. And then I take the transpose. So I get 1

plus i. Transposing swaps the minus 1 and 1. And at the end of the day, I get S

inverse is just this matrix here.
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And if you were to multiply these matrices out, you would see it you actually do

recover A.

So just to summarize quickly, even though we were given a complex matrix A, the

process to diagonalize A is the same as what we've seen before. The first step is to

find the characteristic equation and the eigenvalues. And then the second step is to

find the eigenvectors, and you do this in the same procedure. But in general, the

eigenvectors can be complex. And for this very special case, when A is Hermitian,

the eigenvalues are real, and the eigenvectors are orthogonal to each other.

So I think I'll conclude here, and I'll see you next time.
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