18.099/18.06CI - HOMEWORK 4

JUHA VALKAMA

Problem 1.

(a) Given a finite dimensional linear space L and a subspace $L_{1} \subset L$ we want to prove that there exists a subspace $L_{2} \subset L$ such that $L_{1} \oplus L_{2}=L$. Furthermore, we want to prove that the dimensions of all such direct complements to L_{1} coincide.

Let $\operatorname{dim} L=l$. We pick a basis $\left\{e_{i}\right\}_{i=1}^{l_{1}}$ for L_{1} and note that $\operatorname{dim} L_{1}=l_{1}$. We then use the basis extension theorem and extend the basis of L_{1} to the basis of L. Thus, $\left\{e_{1}, \ldots, e_{l_{1}}, e_{l_{1}+1} \ldots, e_{l}\right\}$ spans L. Let $L_{2}=\operatorname{span}\left\{e_{i}\right\}_{i=l_{1}+1}^{l}$. Since, $L_{1} \cap L_{2}=0$ and $L_{1}+L_{2}=L$ we note that L_{2} is a direct complement to L_{1}. Furthermore, $\operatorname{dim} L_{2}=$ $l-l_{1}$.

Let L_{2}^{\prime} be a direct complement to L_{1} and $\left\{e_{i}^{\prime}\right\}_{i=1}^{l_{2}^{\prime}}$ be a basis for L_{2}^{\prime}. We extend the basis of L_{2}^{\prime} to L by using the basis vectors of L_{1}. Thus, $\left\{e_{1}^{\prime}, \ldots, e_{l_{2}^{\prime}}^{\prime}, e_{1}, \ldots, e_{l_{1}}\right\}$ spans L. Hence, it must be that $\operatorname{dim} L_{2}^{\prime}=$ $l-l_{1}$. However, this is the same as $\operatorname{dim} L_{2}$. Thus, dimensions of all direct complements of L_{1} coincide.
(b) Given $F: L \mapsto M$, we first show that ind $F=\operatorname{dim}(\operatorname{coker} F)-$ $\operatorname{dim}(\operatorname{ker} F)$ is well defined. We note that since part (a) defined direct complement only for finite dimensional spaces we restrict our attention to a finite dimensional M.

Using the result from part (a) we find that coker F, a direct complement to $\operatorname{Im} F \subset M$, always exists and has a finite dimension. Furthermore, ker F also always exists and has a well defined dimension. We can then take $\operatorname{dim} \operatorname{coker} F=c$ and $\operatorname{dim} \operatorname{ker} F=k$. Hence, ind $F=c-k$. We note that c is always a non-negative integer and k can be either a non-negative integer or infinity depending on the dimension of L. Thus, ind F is well defined.

For finite dimensional M and L. Let $\operatorname{dim} M=m$ and $\operatorname{dim} \operatorname{Im} F=$ i. Then $\operatorname{dim} \operatorname{coker} F=m-i$. Further, let $\operatorname{dim} L=l$. Then $\operatorname{dim} \operatorname{ker} F=\operatorname{dim} L-\operatorname{dim} \operatorname{Im} F=l-i$. Thus, ind $F=(m-i)-(l-i)=$ $m-l=\operatorname{dim} M-\operatorname{dim} L$
(c) If $\operatorname{dim} M=\operatorname{dim} L=n$. Then ind $F=0$ and also dim coker $F=$ $\operatorname{dim} \operatorname{ker} F$. If ker $F=0$ then also coker $F=0$ and the system of linear equations always has a solution, while the system with a zero r.h.s has no nontrivial solution.

Problem 2.

We want to show that all triples of non-coplanar, pairwise distinct lines through zero in \mathbb{R}^{3} are identically arranged. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis for \mathbb{R}^{3} and let $v_{i}=a_{1 i} e_{1}+a_{2 i} e_{2}+a_{3 i} e_{3}$ for $i=1,2,3$ be direction vectors for three non-coplanar pairwise distinct lines in \mathbb{R}^{3}. Further, let $v_{i}^{\prime}=a_{1 i}^{\prime} e_{1}+a_{2 i}^{\prime} e_{2}+$ $a_{3 i}^{\prime} e_{3}$ for $i=1,2,3$ be the direction vectors for a second set of non-coplanar pairwise distinct lines in \mathbb{R}^{3}. For v_{i} and v_{i}^{\prime} to be identically arranged we must find a linear map f such that $f\left(v_{i}\right)=v_{i}^{\prime}$ for $i=1,2,3$. This is equivalent to finding a matrix T such that $T\left(a_{i j}\right)=\left(a_{i j}^{\prime}\right)$. Since the three lines are linearly independent we can invert the matrix of coefficients. Thus, $T=\left(a_{i j}^{\prime}\right)\left(a_{i j}\right)^{-1}$ and three such lines are identically arranged.

To consider the arrangements of four such lines we note that direction vectors for three such lines span \mathbb{R}^{3} and thus we express the direction vector for the fourth line as a linear combination of the first three. Namely, $v_{4}=$ $b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3}$ and $v_{4}^{\prime}=b_{1}^{\prime} v_{1}^{\prime}+b_{2}^{\prime} v_{2}^{\prime}+b_{3}^{\prime} v_{3}^{\prime}$. Further, $T\left(v_{4}\right)=b_{1} T\left(v_{1}\right)+$ $b_{2} T\left(v_{2}\right)+b_{3} T\left(v_{3}\right)$. Hence, if we add a scaling factor to the first three direction vectors $T\left(v_{i}\right)=\frac{b_{i}^{\prime}}{b_{i}} v_{i}^{\prime}$ for $i=1,2,3$ it follows that $T\left(v_{4}\right)=v_{4}^{\prime}$ and thus all quadruples of such lines are identically arranged.

