18.099/18.06CI - HOMEWORK 4

JUHA VALKAMA

Problem 1.

(a) Given a finite dimensional linear space L and a subspace $L_1 \subset L$ we want to prove that there exists a subspace $L_2 \subset L$ such that $L_1 \oplus L_2 = L$. Furthermore, we want to prove that the dimensions of all such direct complements to L_1 coincide.

Let dim L = l. We pick a basis $\{e_i\}_{i=1}^{l_1}$ for L_1 and note that dim $L_1 = l_1$. We then use the basis extension theorem and extend the basis of L_1 to the basis of L. Thus, $\{e_1, \ldots, e_{l_1}, e_{l_1+1}, \ldots, e_l\}$ spans L. Let $L_2 = \text{span } \{e_i\}_{i=l_1+1}^l$. Since, $L_1 \cap L_2 = 0$ and $L_1 + L_2 = L$ we note that L_2 is a direct complement to L_1 . Furthermore, dim $L_2 = l - l_1$.

Let L'_2 be a direct complement to L_1 and $\{e'_i\}_{i=1}^{l'_2}$ be a basis for L'_2 . We extend the basis of L'_2 to L by using the basis vectors of L_1 . Thus, $\{e'_1, \ldots, e'_{l'_2}, e_1, \ldots, e_{l_1}\}$ spans L. Hence, it must be that dim $L'_2 = l - l_1$. However, this is the same as dim L_2 . Thus, dimensions of all direct complements of L_1 coincide.

(b) Given $F : L \mapsto M$, we first show that $\operatorname{ind} F = \operatorname{dim}(\operatorname{coker} F) - \operatorname{dim}(\ker F)$ is well defined. We note that since part (a) defined direct complement only for finite dimensional spaces we restrict our attention to a finite dimensional M.

Using the result from part (a) we find that coker F, a direct complement to Im $F \subset M$, always exists and has a finite dimension. Furthermore, ker F also always exists and has a well defined dimension. We can then take dim coker F = c and dim ker F = k. Hence, ind F = c - k. We note that c is always a non-negative integer and k can be either a non-negative integer or infinity depending on the dimension of L. Thus, ind F is well defined.

For finite dimensional M and L. Let dim M = m and dim Im F = i. Then dim coker F = m - i. Further, let dim L = l. Then dim ker $F = \dim L$ -dim Im F = l-i. Thus, ind $F = (m-i)-(l-i) = m - l = \dim M - \dim L$

Date: March 15, 2004.

JUHA VALKAMA

(c) If $\dim M = \dim L = n$. Then $\inf F = 0$ and also $\dim \operatorname{coker} F = \dim \ker F$. If $\ker F = 0$ then also $\operatorname{coker} F = 0$ and the system of linear equations always has a solution, while the system with a zero r.h.s has no nontrivial solution.

Problem 2.

We want to show that all triples of non-coplanar, pairwise distinct lines through zero in \mathbb{R}^3 are identically arranged. Let $\{e_1, e_2, e_3\}$ be a basis for \mathbb{R}^3 and let $v_i = a_{1i}e_1 + a_{2i}e_2 + a_{3i}e_3$ for i = 1, 2, 3 be direction vectors for three non-coplanar pairwise distinct lines in \mathbb{R}^3 . Further, let $v'_i = a'_{1i}e_1 + a'_{2i}e_2 + a'_{3i}e_3$ for i = 1, 2, 3 be the direction vectors for a second set of non-coplanar pairwise distinct lines in \mathbb{R}^3 . For v_i and v'_i to be identically arranged we must find a linear map f such that $f(v_i) = v'_i$ for i = 1, 2, 3. This is equivalent to finding a matrix T such that $T(a_{ij}) = (a'_{ij})$. Since the three lines are linearly independent we can invert the matrix of coefficients. Thus, $T = (a'_{ij})(a_{ij})^{-1}$ and three such lines are identically arranged.

To consider the arrangements of four such lines we note that direction vectors for three such lines span \mathbb{R}^3 and thus we express the direction vector for the fourth line as a linear combination of the first three. Namely, $v_4 = b_1v_1 + b_2v_2 + b_3v_3$ and $v'_4 = b'_1v'_1 + b'_2v'_2 + b'_3v'_3$. Further, $T(v_4) = b_1T(v_1) + b_2T(v_2) + b_3T(v_3)$. Hence, if we add a scaling factor to the first three direction vectors $T(v_i) = \frac{b'_i}{b_i}v'_i$ for i = 1, 2, 3 it follows that $T(v_4) = v'_4$ and thus all quadruples of such lines are identically arranged.