18.099/18.06CI - HOMEWORK 1

JUHA VALKAMA

Problem 1.

The field \mathbb{Q} is a linear space over \mathbb{Q} , but not over \mathbb{R} . In order to prove the latter statement by contradiction, suppose that \mathbb{Q} is a linear space over \mathbb{R} . For $v \neq 0, v \in \mathbb{Q}$, $f, g \in \mathbb{R}$, $fv = gv \Rightarrow f = g$ and $fv \neq gv \Rightarrow f \neq g$. This then would give a one-to-one map from \mathbb{R} to \mathbb{Q} defined as $f \mapsto fv$. However, since the cardinality of \mathbb{R} is greater than the cardinality of \mathbb{Q} , there cannot be a one-to-one map from \mathbb{R} to \mathbb{Q} . Thus, by contradiction, \mathbb{Q} is not a linear space over \mathbb{R} . Conversely, one-to-one map from \mathbb{Q} to \mathbb{R} can be defined as $q \mapsto qr, q \in \mathbb{Q}, r \in \mathbb{R}$. Hence, by restricting the coefficients from \mathbb{R} to \mathbb{Q} , any linear space over \mathbb{R} becomes a linear space over \mathbb{Q} .

Problem 2.

- (a) Yes, sequences with only finitely many nonzero elements are a subspace of A. Let S be all the infinite sequences over \mathbb{R} with finitely many non-zero terms and let $a, b \in S, k \in \mathbb{R}$. It is clear that $a + kb \in S$ since the number of non-zero terms will still be finite.
- (b) No, sequences with only finitely many zero terms are not a subspace of A. Let S be all the infinite sequences over \mathbb{R} with only finitely many zero terms and let $a \in S$. Since $0 \cdot a = 0 \notin S$, S is not a linear space.
- (c) Yes, Cauchy sequences are a subspace of A. Let S be the set of all Cauchy sequences and $a, b \in S$. Suppose ε_{ab} is given and choose $\varepsilon_a, \varepsilon_b > 0$ such that $\varepsilon_{ab} = \varepsilon_a + \varepsilon_b$. Find $N_a, N_b \in \mathbb{R}$ such that $|a_n a_m| < \varepsilon_a$ for all $m, n > N_a$ (similarly for b). We need to locate N_{ab} such that $|(a_n + b_n) (a_m + b_m)| < \varepsilon_{ab}$ for all $m, n > N_{ab}$. From triangle inequality $|A + B| \leq |A| + |B|$. Hence, for $N_{ab} = max(N_a, N_b), |(a_n a_m) + (b_n b_m)| \leq \varepsilon_a + \varepsilon_b = \varepsilon_{ab}$.
- (d) Yes, the sequences, for which the sum of the squares of the elements converges, is a subspace of A. Let S be the set of all the infinite sequences $\{a_i\}_{i=1}^{\infty}, a_i \in \mathbb{R}$ for which $\sum_{i=1}^{\infty} a_i^2$ converges. Then for $a, b \in S, a + b \in S : \sum (a_i + b_i)^2 = \sum a_i^2 + \sum b_i^2 + 2 \sum a_i b_i$. By Cauchy-Schwarz $(\sum x_i^2) \cdot (\sum y_i^2) \ge (\sum a_i b_i)^2$. Also, for $k \in \mathbb{R}, ka \in S : \sum (ka_i)^2 = k^2 \cdot \sum a_i^2$. Therefore, S is a linear space.

Date: February 17, 2004.