18.099/18.06CI - HOMEWORK 1

JUHA VALKAMA

Problem 1.

The field \mathbb{Q} is a linear space over \mathbb{Q}, but not over \mathbb{R}. In order to prove the latter statement by contradiction, suppose that \mathbb{Q} is a linear space over \mathbb{R}. For $v \neq 0, v \in \mathbb{Q}, f, g \in \mathbb{R}, f v=g v \Rightarrow f=g$ and $f v \neq g v \Rightarrow f \neq g$. This then would give a one-to-one map from \mathbb{R} to \mathbb{Q} defined as $f \mapsto f v$. However, since the cardinality of \mathbb{R} is greater than the cardinality of \mathbb{Q}, there cannot be a one-to-one map from \mathbb{R} to \mathbb{Q}. Thus, by contradiction, \mathbb{Q} is not a linear space over \mathbb{R}. Conversely, one-to-one map from \mathbb{Q} to \mathbb{R} can be defined as $q \mapsto q r, q \in \mathbb{Q}, r \in \mathbb{R}$. Hence, by restricting the coefficients from \mathbb{R} to \mathbb{Q}, any linear space over \mathbb{R} becomes a linear space over \mathbb{Q}.

Problem 2.

(a) Yes, sequences with only finitely many nonzero elements are a subspace of A. Let S be all the infinite sequences over \mathbb{R} with finitely many non-zero terms and let $a, b \in S, k \in \mathbb{R}$. It is clear that $a+k b \in S$ since the number of non-zero terms will still be finite.
(b) No, sequences with only finitely many zero terms are not a subspace of A. Let S be all the infinite sequences over \mathbb{R} with only finitely many zero terms and let $a \in S$. Since $0 \cdot a=0 \notin S, S$ is not a linear space.
(c) Yes, Cauchy sequences are a subspace of A. Let S be the set of all Cauchy sequences and $a, b \in S$. Suppose $\varepsilon_{a b}$ is given and choose $\varepsilon_{a}, \varepsilon_{b}>0$ such that $\varepsilon_{a b}=\varepsilon_{a}+\varepsilon_{b}$. Find $N_{a}, N_{b} \in \mathbb{R}$ such that $\mid a_{n}-$ $a_{m} \mid<\varepsilon_{a}$ for all $m, n>N_{a}$ (similarily for b). We need to locate $N_{a b}$ such that $\left|\left(a_{n}+b_{n}\right)-\left(a_{m}+b_{m}\right)\right|<\varepsilon_{a b}$ for all $m, n>N_{a b}$. From triangle inequality $|A+B| \leq|A|+|B|$. Hence, for $N_{a b}=$ $\max \left(N_{a}, N_{b}\right),\left|\left(a_{n}-a_{m}\right)+\left(b_{n}-b_{m}\right)\right| \leq \varepsilon_{a}+\varepsilon_{b}=\varepsilon_{a b}$.
(d) Yes, the sequences, for which the sum of the squares of the elements converges, is a subspace of A. Let S be the set of all the infinite sequences $\left\{a_{i}\right\}_{i=1}^{\infty}, a_{i} \in \mathbb{R}$ for which $\sum_{i=1}^{\infty} a_{i}^{2}$ converges. Then for $a, b \in S, a+b \in S: \sum\left(a_{i}+b_{i}\right)^{2}=\sum a_{i}^{2}+\sum b_{i}^{2}+2 \sum a_{i} b_{i}$. By Cauchy-Schwarz $\left(\sum x_{i}^{2}\right) \cdot\left(\sum y_{i}^{2}\right) \geq\left(\sum a_{i} b_{i}\right)^{2}$. Also, for $k \in \mathbb{R}, k a \in$ $S: \sum\left(k a_{i}\right)^{2}=k^{2} \cdot \sum a_{i}^{2}$. Therefore, S is a linear space.

