HW-4

Due on Monday, March 15 in class. First draft due by Thursday, March 11.

- (1) (a) A direct complement to a subspace L_1 in a finite dimensional space L is a subspace $L_2 \subset L$ such that $L = L_1 \oplus L_2$. Prove that for any subspace L_1 a direct complement exists, and the dimensions of any two direct complements of L_1 in L coincide.
 - (b) For a linear map $F: L \to M$, let coker F be a direct complement of ImF in M. Define the *index* of the map F by

 $\operatorname{ind} F = \dim(\operatorname{coker} F) - \dim(\operatorname{ker} F).$

Check using (a) that $\operatorname{ind} F$ is well-defined. Prove that if L and M are finite dimensional, $\operatorname{ind} F$ depends only on the dimensions of L and M:

$$\operatorname{ind} F = \dim(M) - \dim(L).$$

- (c) Set $\dim(M) = \dim(L) = n$. What can you deduce from (b) about systems of n linear equations in n variables?
- (2) Two ordered n-tuples of subspaces (L₁, L₂,..., L_n) and (L'₁, L'₂,..., L'_n) in a finite dimensional L are *identically arranged* if there exists a linear automorphism (bijecitve linear map from a space to itself) F : L → L such that F(L_i) = L'_i for all i = 1,...n. Show that all triples of non-coplanar, pairwise distinct lines through zero in ℝ³ are identically arranged. Classify the arrangements of quadruples of such lines in ℝ³.