HW-3
Due on Monday, March 8 in class. First draft due on Thursday, Feb 26. First $\mathrm{LA}_{\mathrm{E}} \mathrm{Xdraft}$ due on Thursday, March 4.
(1) Let L and M be finite dimensional linear spaces and let $f: L \rightarrow M$ be a linear map. Prove that the subspaces $\operatorname{ker} f$ and $\operatorname{Im} f$ are finite dimensional and

$$
\operatorname{dim} \operatorname{ker} f+\operatorname{dim} \operatorname{Im} f=\operatorname{dim} L .
$$

Hint: Use the extension of a basis theorem.
(2) Consider the space $\mathcal{L}(V, V)$ of linear maps from a finite dimensional real linear space V to itself. Which of the following subsets of $\mathcal{L}(V, V)$ are linear spaces:
(a) $\{f \in \mathcal{L}(V, V) \mid \operatorname{dim} \operatorname{Im} f=0\}$;
(b) $\{f \in \mathcal{L}(V, V) \mid \operatorname{dim} \operatorname{ker} f=0\}$;
(c) $\{f \in \mathcal{L}(V, V) \mid \operatorname{dim} \operatorname{Im} f<\operatorname{dim} V\}$.

Reformulate the obtained results in terms of matrices.
(3) (a) Show that there are no finite square real or complex matrices X and Y such that $X Y-Y X=I$, where I is the identity matrix.
(b) Check that multiplication by x and differentiation $\frac{d}{d x}$ are linear maps on the (real or complex) space \mathcal{P} of all polynomials in one variable x. Compute the action of $\frac{d}{d x} \circ x-x \circ \frac{d}{d x}$ in \mathcal{P}. Here "o" denotes the composition of two maps.
(c) Introduce the concept of a matrix with infinitely many rows and columns. Define the multiplication for infinite matrices in which each column and each row has a finite number of non-zero elements. Using (b), find a solution for $X Y-Y X=I$ in terms of infinite matrices.

