HW-3

Due on Monday, March 8 in class. First draft due on Thursday, Feb 26. First $LAT_EXdraft$ due on Thursday, March 4.

(1) Let L and M be finite dimensional linear spaces and let $f: L \to M$ be a linear map. Prove that the subspaces ker f and Imf are finite dimensional and

 $\dim \ker f + \dim \operatorname{Im} f = \dim L.$

Hint: Use the extension of a basis theorem.

- (2) Consider the space $\mathcal{L}(V, V)$ of linear maps from a finite dimensional real linear space V to itself. Which of the following subsets of $\mathcal{L}(V, V)$ are linear spaces:
 - (a) $\{f \in \mathcal{L}(V, V) \mid \dim \operatorname{Im} f = 0\};$
 - (b) $\{f \in \mathcal{L}(V, V) \mid \dim \ker f = 0\};$

(c) $\{f \in \mathcal{L}(V, V) \mid \dim \operatorname{Im} f < \dim V\}.$

Reformulate the obtained results in terms of matrices.

- (3) (a) Show that there are no finite square real or complex matrices X and Y such that XY YX = I, where I is the identity matrix.
 - (b) Check that multiplication by x and differentiation $\frac{d}{dx}$ are linear maps on the (real or complex) space \mathcal{P} of all polynomials in one variable x. Compute the action of $\frac{d}{dx} \circ x x \circ \frac{d}{dx}$ in \mathcal{P} . Here " \circ " denotes the composition of two maps.
 - (c) Introduce the concept of a matrix with infinitely many rows and columns. Define the multiplication for infinite matrices in which each column and each row has a finite number of non-zero elements. Using (b), find a solution for XY - YX = I in terms of infinite matrices.