
18.06 Problem Set 5 Solution 
Total: points 

Section 4.1. Problem 7. Every system with no solution is like the one in problem 
6. There are numbers y1, . . . , ym that multiply the m equations so they add up to 
0 = 1. This is called Fredholm’s Alternative: 

Exactly one of these problems has a solution: Ax = b OR AT y = 0 with 
yT b = 1. 

If b is not in the column space of A it is not orthogonal to the nullspace of AT . 
Multiply the equations x1 − x2 = 1 and x2 − x3 = 1 and x1 − x3 = 1 by numbers 
y1, y2, y3 chosen so that the equations add up to 0 = 1. 

Solution (4 points) Let y1 = 1, y2 = 1 and y3 = −1. Then the left-hand side of the 
sum of the equations is 

(x1 − x2) + (x2 − x3) − (x1 − x3) = x1 − x2 + x2 − x3 + x3 − x1 = 0 

and the right-hand side is 
1 + 1 − 1 = 1. 

Problem 9. If AT Ax = 0 then Ax = 0. Reason: Ax is inthe nullspace of AT and 
also in the of A and those spaces are . Conclusion: AT A 
has the same nullspace as A. This key fact is repeated in the next section. 

Solution (4 points) Ax is in the nullspace of AT and also in the column space of A 
and those spaces are orthogonal. 

Problem 31. The command N=null(A) will produce a basis for the nullspace of 
A. Then the command B=null(N’) will produce a basis for the of A. 

Solution (12 points) The matrix N will have as its columns a basis for the nullspace 
of A. Thus if a vector is in the nullspace of NT it must have dot product 0 with 
every vector in the basis of N(A), thus it must be in the row space of A. Thus the 
command null(N’) will produce a basis for the row space of A. 
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>> A = rand(6,12) 

A = 

Columns 1 through 6 

0.8147 0.2785 0.9572 0.7922 0.6787 0.7060 
0.9058 0.5469 0.4854 0.9595 0.7577 0.0318 
0.1270 0.9575 0.8003 0.6557 0.7431 0.2769 
0.9134 0.9649 0.1419 0.0357 0.3922 0.0462 
0.6324 0.1576 0.4218 0.8491 0.6555 0.0971 
0.0975 0.9706 0.9157 0.9340 0.1712 0.8235 

Columns 6 through 12 

0.6948 0.7655 0.7094 0.1190 0.7513 0.5472 
0.3171 0.7952 0.7547 0.4984 0.2551 0.1386 
0.9502 0.1869 0.2760 0.9597 0.5060 0.1493 
0.0344 0.4898 0.6797 0.3404 0.6991 0.2575 
0.4387 0.4456 0.6551 0.5853 0.8909 0.8407 
0.3816 0.6463 0.1626 0.2238 0.9593 0.2543 

>> N = null(A); 
>> B = null(N’) 

B = 

0.1754 0.3288 0.6264 -0.0997 -0.0309 0.0112 
-0.1000 0.6512 -0.1687 0.5528 0.1346 -0.1632 
0.4380 0.2124 -0.3137 -0.1684 0.0050 0.0507 

-0.0661 0.0094 -0.2313 -0.5029 0.5792 -0.4208 
0.4425 -0.0527 0.2166 0.0525 0.1071 -0.2063 
0.2213 0.3024 -0.3429 -0.2123 -0.1149 0.3415 
0.6724 -0.1323 -0.1677 0.1315 -0.0249 0.0211 

-0.0371 0.4083 0.1074 -0.3610 0.0993 -0.1251 
0.1827 0.1595 0.4375 -0.0581 0.0910 0.0005 
0.1438 -0.1870 0.0025 0.4256 0.4134 -0.3188 

-0.0887 0.1540 -0.0283 0.1444 0.5060 0.5600 
0.0533 -0.2452 0.1759 -0.0477 0.4184 0.4506 

>> rref(A) - rref(B’) 
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ans = 

1.0e-13 * 

Columns 1 through 6 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Columns 6 through 12 

-0.0389 0.0533 -0.0344 -0.0888 -0.2420 -0.2043 
0.0047 -0.0022 0.0044 0.0089 0.0289 0.0200 

-0.1710 0.1843 -0.0999 -0.3020 -0.7816 -0.6395 
0.0153 -0.0089 0.0092 0.0205 0.0444 0.0333 
0.1155 -0.1377 0.0688 0.2132 0.5596 0.4796 
0.1488 -0.1643 0.0888 0.2709 0.6928 0.5684 

Note that if B has as its columns a basis for the row space of A then the rows of BT 

will form a basis for the row space of A. Since the row reduced forms of A and BT 

agree (up to 13 decimal places, but the numbers up there are just rounding error) 
their rows must span the same space, so the columns of B are indeed a basis for the 
row space of A. 

Problem 32. Suppose I give you four nonzero vectors r, n, c, l in R2 . 

a.	 What are the conditions for those to be bases for the four fundamental sub
spaces C(AT ), N(A), C(A), N(AT ) of a 2 × 2 matrix? 

b. What is one possible matrix A? 

Solution (12 points) 

a.	 In order for r and n to be bases for N(A) and C(AT ) we must have r n = · 
0, as the row space and null space must be orthogonal. Similarly, in order 
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for c and l to form bases for C(A) and N(AT ) we need c l = 0, as the· 
column space and the left nullspace are orthogonal. In addition, we need 
dim N(A)+dim C(AT ) = n and dim N(AT )+dim C(A) = m; however, in this 
case n = m = 1, and as the four vectors we are given are nonzero both of these 
equations reduce to 1 + 1 = 2, which is automatically satisfied. 

b. One possible such matrix is A = crT . Note that each column of A will be 
a multiple of c, so it will have the right column space. On the other hand, 
each row of A will be a multiple of r, so A will have the right row space. 
The nullspaces don’t need to be checked, as any matrix with the correct row 
and column space will have the right nullspaces (as the nullspaces are just the 
orthogonal complements of the row and column spaces). 

Problem 33. Suppose I give you four nonzero vectors r1, r2, n1, n2, c1, c2, l1, l2 in 
R2 . 

a.	 What are the conditions for those to be bases for the four fundamental sub
spaces C(AT ), N(A), C(A), N(AT ) of a 2 × 2 matrix? 

b. What is one possible matrix A? 

Solution (12 points) 

a.	 Firstly, by the same kind of dimension considerations as before we need the four 
sets {r1, r2}, {n1, n2}, {c1, c2} and {l1, l2} to each contain linearly independent 
vectors. (For example, if r1 and r2 are linearly dependent the dim C(AT ) = 1 
not 2, and then dim C(AT ) + dim N(A) < 4 which can’t happen.) 

Secondly, for i = 1, 2 and j = 1, 2 we need ri nj = 0 and ci lj = 0. This ·	 · 
will imply that the specified row space and nullspace are orthogonal, and that 
the specified column space and left nullpace are also orthogonal. (When we 
are given subspaces in terms of bases it suffices to check orthogonality on the 
basis.) 

b. One possible such matrix is � � � �T 
A = c1 c2 r1 r2 . 

Note that every column of A is a linear combination of c1 and c2, so C(A) is 
at least a subspace of the desired column space. On the other hand, as r1 and 
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r2 are linearly independent we know that r1 r2 has full row rank, so A 
will have rank 2 and thus A has the right column space. 

On the other hand,

AT = r1 r2 c1 c2 

� � �T 

so C(AT ) is spanned by r1 and r2, as desired. Thus A has the right row space 
and column space, and thus will have the right nullspace and left nullspace. 

Section 4.2. Problem 13. Suppose A is the 4 × 4 identity matrix with its last 
column removed. A is 4 × 3. Project b = (1, 2, 3, 4) onto the column space of A. 
What shape is the projection matrix P and what is P ? 

Solution (4 points) P will be 4×4 since we take a 4-dimensional vector and project 
it to another 4-dimensional vector. We will have ⎞⎛ 

P =

⎜⎜⎝


1 0 0 0

0 1 0 0
 ⎟⎟⎠
.
0 0 1 0

0 0 0 0


(This can be seen by direct computation, or by simply observing that the column 
space of A is the wxy-space, so we just need to remove the z coordinate to project.) 
The projection of b is (1, 2, 3, 0). 

Problem 16. What linear combination of (1, 2, −1) and (1, 0, 1) is closest to b = 
(2, 1, 1)? 

Solution (4 points)

Note that


1 3 
(1, 2, −1) + (1, 0, 1) = (2, 1, 1). 

2 2

So this b is actually in the span of the two given vectors. 

Problem 17. If P 2 = P show that (I − P )2 = I − P . When P projects onto the 
column space of A, I − P projects onto the . 

Solution (4 points) 

(I − P )2 = I2 − IP − PI + P 2 = I − 2P + P 2 = I − 2P + P = I − P. 
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When P projects onto the column space of A, I − P projects onto the left nullspace 
of A. 

Problem 30. 

a. Find the projection matrix PC ontot he column space of A. 

3 6 6 
. 

4 8 8 

b. Find the 3 × 3 projection matrix PR onto the row space of A. Multiply B = 
PC APR. Your answer B should be a little suprising — can you explain it? 

Solution (12 points) 

a. Note that as A is rank 1 its column space is spanned by the vector a = � �T 
3 4 . Using this matrix we can compute 

PC = a(a T a)−1 a T =
1 9 12 

. 
25 12 16 

� �T 
b. The row space of A is spanned by the vector a = 1 2 2 . Then we 

compute	 ⎛ ⎞

1 2 2


1 
PR = a(a T a)−1 a T = ⎝ 2 4 4 ⎠ . 
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Then B = PC APR = A. First, note that PC A = A, as for every vector x, 
Ax ∈ C(A), so PC Ax = Ax. Analogously, APR = A, as for every vector x we 
can write it uniquely as x = n+r with n in N(A) and r in C(AT ). Then Ax = 
An+Ar = Ar by the definition of nullspace. But PRx = PRn+PRr = PRr, as 
the nullspace is orthogonal to the row space, so projecting onto the row space 
kills the nullspace. So APR = A. Thus PC APR = (PC A)PR = APR = A, as 
desired. 

Problem 31. In Rm , suppose I give you b and p, and n linearly independent 
vectors a1, . . . , an. How would you test to see if p is the projection of b onto the 
subspace spanned by the a’s? 
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Solution (12 points) 
The projection of b must lie in the span of the a’s, and must also be the closest 

vector in this span, meaning that the error will be orthogonal to this span. Thus we 
need to check (a) that p is in the span of the a’s, and (b) that b − p is orthogonal 
to ai for each i = 1, . . . , n. Note that just checking (b) is not enough because if we 
set p = b then (b) will be satisfied but (a) will not be if b is not in the span of the 
a’s. 

Problem 34. If A has r independent columns and B has r independent rows, AB

is invertible.

Proof: When A is m by r with independent columns, we know that AT A is invertible.

If B is r by n with independent rows, show that BBT is invertible. (Take A = BT .)


Now show that AB has rank r. 

Solution (12 points) Let A = BT . As B has independent rows, A has independent 
columns, so AT A is invertible. But AT A = (BT )T BT = BBT , so BBT is invertible, 
as desired. 

Note that AT A is r × r and is invertible, and BBT is r × r and is invertible, so 
AT ABBT is r × r and invertible, so in particular has rank r. Thus we have that 
AT (AB)BT has rank r. We know that multiplying AB by any matrix on the left or 
on the right cannot increase rank, but can only decrease it. Thus we see that AB 
has rank at least r. However, AB is r ×r, so it has rank r and is therefore invertible. 

Section 8.2. Problem 13. With conductances c1 = c2 = 2 and c3 = c4 = c5 = 3, 
multiply the matrices AT CA. Find a solution to AT CAx = f = (1, 0, 0, −1). Where 
these potentials x and currents y = −CAx on the nodes and edges of the square 
graph. 

Solution (4 points) For this graph the incidence matrix is ⎞⎛ 
−1 1 0 0

−1 0 1 0
⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎠

A =
 0


0

−1 1 0
 .

−1 

0 0 −1 1 

We are told that the conductance matrix has diagonal entries (2, 2, 3, 3, 3). Then 

0 1


⎞⎛ ⎜⎜⎝


4 −2 −2 0

−2 8 −3 −3

−2

0


−3

−3


8 −3 
−3 6 

⎟⎟⎠
AT CA = .
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A solution to the given equation is x = (5/12, 1/6, 1/6, 0); then y = (1/2, 1/2, 0, 1/2, 1/2). 
The picture associated to this solution is 

1/2

0

1/2

1/2

1/2

5/12 1/6

1/6 0

Problem 17. Suppose A is a 12 × 9 incidence matrix from a connected (but 
unknown) graph. 

a.	 How many columns of A are independent? 

b. What condition on f makes it possible to solve AT y = f? 

c.	 The diagonal entries of AT A give the number of edges into each node. What 
is the sum of those diagonal entries? 

Solution (12 points) 

a.	 Note that as A is 12 × 9 it is a graph with 9 nodes and 12 edges. As it is 
connected elimination will produce a tree with 8 edges, so the rank of A is 8, 
and so it has 8 independent columns. 

b. In order to solve AT y we need the entries of f to add up to 0, as f needs to 
be in C(AT ), which is orthogonal to N(A) and is generated by (1, 1, . . . , 1). 

c.	 The sum of the entries of AT A is the sum of the degrees of all of the nodes. 
As each edge hits exactly two nodes it will be counted twice, so the sum of 
the diagonal entries is 24. 
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