18.06 Problem Set 4 Solution

Total: 100 points

Section 3.5. Problem 2: (Recommended) Find the largest possible number of independent vectors among

$$
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right] \quad v_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right] \quad v_{3}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right] \quad v_{4}=\left[\begin{array}{c}
\mathbf{0}^{0} \\
1 \\
-1 \\
0
\end{array}\right] \quad v_{5}=\left[\begin{array}{c}
)^{0} \\
1 \\
0 \\
-1
\end{array}\right] \quad v_{6}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right] .
$$

Solution (4 points): Since $v_{4}=v_{2}-v_{1}, v_{5}=v_{3}-v_{1}$, and $v_{6}=v_{3}-v_{2}$, there are at most three independent vectors among these: furthermore, applying row reduction to the matrix $\left[v_{1} v_{2} v_{3}\right]$ gives three pivots, showing that v_{1}, v_{2}, and v_{3} are independent.

Section 3.5. Problem 20: Find a basis for the plane $x-2 y+3 z=0$ in R^{3}. Then find a basis for the intersection of that plane with the $x y$ plane. Then find a basis for all vectors perpendicular to the plane.
Solution (4 points): This plane is the nullspace of the matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The special solutions

$$
v_{1}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] \quad v_{2}=\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

give a basis for the nullspace, and thus for the plane. The intersection of this plane with the $x y$ plane is a line: since the first vector lies in the $x y$ plane, it must lie on the line and thus gives a basis for it. Finally, the vector

$$
v_{3}=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]
$$

is obviously perpendicular to both vectors: since the space of vectors perpendicular to a plane in \mathbb{R}^{3} is one-dimensional, it gives a basis.

Section 3.5. Problem 37: If $A S=S A$ for the shift matrix S, show that A must have this special form:

$$
\text { If }\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \text {, then } A=\left[\begin{array}{ccc}
a & b & c \\
0 & a & b \\
0 & 0 & a i
\end{array}\right]
$$

"The subspace of matrices that commute with the shift S has dimension ._."

Solution (4 points): Multiplying out both sides gives

$$
\left[\begin{array}{lll}
0 & a & b \\
0 & d & e \\
0 & g & h
\end{array}\right]=\left[\begin{array}{lll}
d & e & f \\
g & h & i \\
0 & 0 & 0
\end{array}\right]
$$

Equating them gives $d=g=h=0, e=i=a, f=b$, i.e. the matrix with the form above. Since there are three free variables, the subspace of these matrices has dimension 3 .

Section 3.5. Problem 41: Write a 3 by 3 identity matrix as a combination of the other five permutation matrices. Then show that those five matrices are linearly indpendent. (Assume a combination gives $c_{1} P_{1}+\cdots+c_{5} P_{5}=0$, and check entries to prove c_{i} is zero.) The five permutation matrices are a basis for the subspace of 3 by 3 matrices with row and column sums all equal.
Solution (12 points): The other five permutation matrices are

$$
P_{21}=\left[\begin{array}{lll}
& 1 & \\
1 & & \\
& & 1
\end{array}\right], P_{31}=\left[\begin{array}{lll}
& & 1 \\
& 1 & \\
1 & &
\end{array}\right], P_{32}=\left[\begin{array}{lll}
1 & & \\
& & 1 \\
& 1 &
\end{array}\right], P_{32} P_{21}=\left[\begin{array}{lll}
& 1 & \\
& & 1 \\
1 & &
\end{array}\right], P_{21} P_{32}=\left[\begin{array}{ll}
1 & 1 \\
1 & \\
& 1
\end{array}\right]
$$

Since $P_{21}+P_{31}+P_{32}$ is the all 1s matrix and $P_{32} P_{21}+P_{21} P_{32}$ is the matrix with 0 s on the diagonal and 1s elsewhere, $I=P_{21}+P_{31}+P_{32}-P_{32} P_{21}-P_{21} P_{32}$. For the second part, the combination above gives

$$
\left[\begin{array}{ccc}
c_{3} & c_{1}+c_{4} & c_{2}+c_{5} \\
c_{1}+c_{5} & c_{2} & c_{3}+c_{4} \\
c_{2}+c_{4} & c_{3}+c_{5} & c_{1}
\end{array}\right]=0
$$

Setting each element equal to 0 first gives $c_{1}=c_{2}=c_{3}=0$ along the diagonal, then $c_{4}=c_{5}=0$ on the off-diagonal entries.

Section 3.5. Problem 44: (An aside in the text, followed by) dimension of outputs + dimension of nullspace $=$ dimension of inputs. For an m by n matrix of rank r, what are those 3 dimensions? Outputs = column space. This question wil be answered in Section 3.6, can you do it now?
Solution (12 points): You should think about the aside in the text, as well as problem 43: the actual question asked, here, however is quite simple. The dimension of inputs for an m by n matrix is n (the matrix takes n-vectors to m-vectors), while the dimension of the nullspace is $n-r$ and the dimension of outputs $=$ dimension of column space is r. Since $n-r+r=n$, we have the given relation.

Section 3.6. Problem 11: A is an m by n matrix of rank r. Suppose there are right sides \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has no solution.
(a) What are all the inequalities $(<$ or $\leq)$ that must be true between m, n, and r ?
(b) How do you know that $A^{T} \mathbf{y}=\mathbf{0}$ has solutions other than $\mathbf{y}=\mathbf{0}$?

Solution (4 points): (a) The rank of a matrix is always less than or equal to the number of rows and columns, so $r \leq m$ and $r \leq n$. Moreover, by the second statement, the column space is smaller than the space of possible output matrices, i.e. $r<m$.
(b) These solutions make up the left nullspace, which has dimension $m-r>0$ (that is, there are nonzero vectors in it).

Section 3.6. Problem 24: $A^{T} \mathbf{y}=\mathbf{d}$ is solvable when \mathbf{d} is in which of the four subspaces? The solution is unique when the _- contains only the zero vector.

Solution (4 points): It is solvable when \mathbf{d} is in the row space, which consists of all vectors $A^{T} \mathbf{y}$, and is unique when the left nullspace contains only the zero vector (as any two solutions differ by an element in the left nullspace).

Section 3.6. Problem 28: Find the ranks of the 8 by 8 checkerboard matrix B and the chess matrix C :

$$
B=\left[\begin{array}{llllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \quad \text { and } C=\left[\begin{array}{llllllll}
r & n & b & q & k & b & n & r \\
p & p & p & p & p & p & p & p \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
p & p & p & p & p & p & p & p \\
r & n & b & q & k & b & n & r
\end{array}\right]
$$

The numbers r, n, b, k, q, p are all different. Find bases for the rowspace and left nullspace of B and C. Challenge problem: Find a basis for the nullspace of C.

Solution (4 points): In both cases, elimination kills all but the top two rows, so, if $p \neq 0$, both matrices have rank 2 as well as rowspace bases given by the top two rows (or course, if $p=0, C$ has rank 1 with rowspace generated by the top row). B is symmetric, so its left nullspace is the same as the nullspace, and the special solutions are:

$$
v_{1}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right], v_{4}=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], v_{5}=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right], v_{6}=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Finally, the nullspace of C^{T} is given by

$$
w_{1}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right], w_{2}=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right], w_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], w_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], w_{5}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], w_{6}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

if $p \neq 0$, and

$$
w_{1}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right], w_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], w_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], w_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], w_{5}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], w_{6}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right], w_{7}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

if $p=0$.
Solution (12 points): (Challenge subpart) There are three obvious special solutions of C :

$$
u_{1}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right], u_{3}=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

If $p=0$, the other solutions are similarly straightforward:

$$
u_{4}=\left[\begin{array}{c}
-\frac{n}{r} \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], u_{5}=\left[\begin{array}{c}
-\frac{b}{r} \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], u_{6}=\left[\begin{array}{c}
-\frac{k}{r} \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], u_{7}=\left[\begin{array}{c}
-\frac{q}{r} \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Otherwise, simultaneously solving $c_{1} r+c_{2} n+b=0$ and $\left(c_{1}+c_{2}+1\right) p=0$ (and similarly for q and k instead of b), we get

$$
u_{4}=\left[\begin{array}{c}
\frac{n-b}{r-n} \\
\frac{b-r}{r-n} \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], u_{5}=\left[\begin{array}{c}
\frac{n-q}{r-n} \\
\frac{q-r}{r-n} \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], u_{6}=\left[\begin{array}{c}
\frac{n-k}{r-n} \\
\frac{k-r}{r-n} \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Section 3.6. Problem 30: If $A=\mathbf{u v}^{T}$ is a 2 by 2 matrix of rank 1, redraw Figure 3.5 to show clearly the Four Fundamental Subspaces. If B produces those same four subspaces, what is the exact relation of B to A ?

Solution (12 points): One draws the same diagram as in the book, but now each space has dimension 1, the column space is the set of multiples of \mathbf{u}, the row space is the set of multiples of \mathbf{v}^{T}, the nullspace is the plane perpendicular to \mathbf{v}, and the left nullspace is the plane perpendicular to \mathbf{u}. If $B=\mathbf{u}^{\prime} \mathbf{v}^{\prime T}$ produces the same four subspaces, \mathbf{u}^{\prime} is a multiple of \mathbf{u} and \mathbf{v}^{\prime} is a multiple of \mathbf{v}, i.e. B is a multiple of A.

Section 3.6. Problem 31: \mathbf{M} is the space of 3 by 3 matrices. Multiply each matrix X in \mathbf{M} by

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \text {. Notice: } A\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

(a) Which matrices X lead to $A X=0$?
(b) Which matrices have the form $A X$ for some matrix X ?
(a) finds the "nullspace" of that operation $A X$ and (b) finds the "column space". What are the dimensions of those two subspaces of \mathbf{M} ? Why do the dimensions add to $(n-r)+r=9$?

Solution (12 points): (a) A clearly has rank 2, with nullspace having the basis [111] ${ }^{T}$. $A X=0$ precisely when the columns of X are in the nullspace of A, i.e. when they are multiples of the all 1s vector.

$$
X=\left[\begin{array}{lll}
a & b & c \\
a & b & c \\
a & b & c
\end{array}\right]
$$

(b) On the other hand, the columns of any matrix of the form $A X$ are linear combinations of the columns of A. That is, they are vectors whose components all sum to 0 , so a matrix has the form $A X$ if and only if all of its columns individually sum to 0 .

$$
A X=B \text { if and only if } B=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
-a-d & -b-e & -c-f
\end{array}\right]
$$

The dimension of the "nullspace" is 3 , while the dimension of the "column space" is 6 . They add up to 9 , which is the dimension of the space of "inputs" of this matrix, when treated as a linear map on matrices.

MIT OpenCourseWare
http://ocw.mit.edu

18.06 Linear Algebra

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

