
18.05 Problem Set 8, Spring 2014

Problem 1. (10 pts.) Jerry steals a JP Licks token and asks Jon to perform a test at
significance level α = 0.05 to investigate whether the coin is fair or biased toward tails (the
side that says ‘Token’). Jon records the following data

THTTHTTTTTTH

showing 3 heads and 9 tails. But before Jon can compute the one-sided p-value for H0 :
θ = 0.5 versus HA : θ < 0.5, he needs to take Aviva to the playground.

(a) Erika believes that Jon’s intention was to count the number of heads in twelve flips.
Let’s call this Experiment 1. Compute the rejection region and p-value. Sketch the null-
distribution and rejection region. What does Erika conclude?

(b) Ruthi believes that Jon’s intention was to stop after the third heads and report the
number of tails, e.g., in the data the third head came on flip 12 so the number of tails is
9. Let’s call this Experiment 2. Compute and sketch the corresponding null-distribution,
rejection region, and p-value. What does Ruthi conclude? Hint: if a counting argument
eludes you, google “negative binomial distribution”.

The R functions dnbinom, pnbinom, etc. might be helpful. For example, dnbinom(5, 3, 0.2)

gives the probability of seeing 5 tails before the third head in a sequence of tosses of a coin
with probability 0.2 of heads.

(c) Jerry actually told Jon to count the number of heads in 100 flips (Experiment 3), so
Jerry figures that Jon must have gotten bored and quit right after the 12th flip. Strictly
speaking, can Jerry compute a p-value from Jon’s partial data? Why or why not?

(d) Let’s reexamine the same data from the Bayesian perspective. What is the likelihood
function for in Experiment 1? What is the likelihood function for in Experiment 2? How
are these likelihood functions related? Given the prior Beta(n,m), find the posterior in each
case. How are they related?

(e) Read http://en.wikipedia.org/wiki/Likelihood_principle, appreciate the volt-
meter story, and summarize the main points we are getting at via the earlier parts of this
problem regarding frequentist and Bayesian experiments.

Problem 2. (10 pts.) Chi-square for variance

The following data comes from a normal distribution which you suspect has variance equal
to 1. You want to test this against the alternative that the variance is greater than 1.

1.76, -2.28, -0.56, 1.46, 0.59, 1.26,

-1.94, -0.79, -0.86, -1.41, 2.07, 1.30

There is a chi-square test for this. Look at
http://www.itl.nist.gov/div898/handbook/eda/section3/eda358.htm

and run the test with significance level 0.05. You can use R for the computations, but
explain what you are doing and give the value of the test statistic, and the p-value.

Problem 3. (10 pts.) Chi-squared for categorical data

Jon and Jerry spent a fortune on dice and and bent coins for 18.05, so they decide to submit
an invoice to the math department for reimbursement. The math department suspects that
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their six figure expense report is made up so they call you to test the data for fraud. You
do some research and learn that accounting data should follow something called Benford’s
law. This states that the relative frequency of the first digits of each entry should have the
following distribution:

First digit k 1 2 3 4 5 6 7 8 9

probability p(k) 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

You go back to the math department and tell them that the only data you need is the
counts of all the first digits in their invoice. They are skeptical, but they know you have
taken 18.05 and so must know what you are doing. They give you the following counts.

First digit k 1 2 3 4 5 6 7 8 9

count 7 13 12 9 9 13 11 10 16

The math department doesn’t want to unjustly accuse Jon and Jerry, so they ask you to test
at 0.001 significance level. Run a significance test to see how well this data fits Benford’s
distribution and make a recommendation to the math department.

See http://en.wikipedia.org/wiki/Benford’s_law

Problem 4. (10 pts.) Two-sample F test for equal variances

In this problem, we want you to become comfortable using the web to learn about new
tests and R commands. There are dozens of statistical software packages used by labs and
industry, so being able to learn new commands is more important than having them all
memorized. Look at the help file in R for var.test

We used R to secretly create a vector x of 20 random samples from an N(0, 1) distribution
and a vector y of 20 random samples from a N(10, 1) distribution. These are listed below.
With a tiny bit of editing you should be able to copy and paste these into R.

-0.802, 0.457, 0.972, 0.044, 0.318, -1.380, 0.111,

-0.023, -0.700, -1.977, -0.497, 1.471, -1.314, -0.078,

-0.505, 0.583, 1.363, -1.863, -2.105, 0.488

9.019, 9.852, 7.947, 9.465, 10.060, 10.508, 9.506,

9.540, 10.218, 9.407, 11.455, 11.422, 7.698, 9.972,

10.928, 11.577, 10.376, 8.605, 9.347, 10.715

(a) Temporarily erase from your mind the variances used in generating the data. We want
to test the null hypothesis that the normal distributions which generated x and y have equal
variances. Now use var.test to find the p-value for the test for equal variances. (You may
need to go back and look at the documentation for var.test to see how to do this.)

(b) You should look up the F-test for equal variances online. Give the formula and
compute the F statistic and p-value directly. You can use R to compute sample means,
sample variances and do arithmetic as needed, but you can’t use var.test to do all the
work. You will need the R function pf to compute probabilities for the F distribution

Should you reject the null-hypothesis at α = 0.05?

Note: here is how you get a two-sided p-value for this test.
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If the F -statistic is greater than 1 then

p = 2× the right tail probability

If the F -statistic is less than 1 then

p = 2× the left tail probability

Problem 5. (10 pts.) One-way ANOVA

Read the abstract and see the figures of the following paper:

http://www.sciencedirect.com/science/article/pii/S1090513813000226

Barnaby J. Dixson, Robert C. Brooks. The role of facial hair in women’s perceptions of
men’s attractiveness, health, masculinity and parenting abilities. Evolution and Human
Behavior, Volume 34, Issue 3, May 2013, Pages 236241

Note that one of the authors may have a personal bias:

For this problem you will need the F-test for equal means from the reading for class 19.

(a) The table below records the mean attractiveness rating for 351 heterosexual or bisexual
women who rated the attractiveness of one male face of each type from 0 (very low) to 5
(very high). So we have four groups with 351 samples per group.

facial hair state clean 5-day 10-day full

sample mean 1.32 1.26 1.53 1.39

sample variance 0.56 0.80 0.93 0.82

Run a one-way ANOVA (F-test) at α = 0.01 for equal means “by hand”. That is, compute
the F -statistic and corresponding p value using the data in the table, and decide whether
to reject the null hypothesis.

(b) How many two-sample t-tests would we need to run to compare all four means pairwise?
If exactly one of these tests resulted in a rejection, would it be appropriate to conclude that
we have rejected the null hypothesis in part (a) at significance level α = 0.01?

(c) Following up, use 3 two-sample t-tests to investigate the hypothesis that the mean for
10-day is higher than the each of the others. (The two-sample t-test is described in the
reading for class 19.

3

http://www.barnabydixson.net/people.html

http://www.barnabydixson.net/people.html
http://www.sciencedirect.com/science/article/pii/S1090513813000226


MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics
Spring 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms



