
18.05 Problem Set 7, Spring 2014 Solutions

Problem 1. (10 pts.) (a) H0: θ = 0.5
HA: one-sided θ > 0.5, two-sided θ 6= 0.5.
Test statistic: x = number of heads in 250 spins.
Data: x = 140.

One-sided data at least as extreme: x ≥ 140. Using R we compute the one-sided p-value is

p = P (x ≥ 140|H0) = 1 - pbinom(139, 250, 0.5) = 0.03321

The one-sided p-value computes the probability in the one-sided tail. Because our null
distribution (binomial(250, 0.5)) is symmetric, each tail in the rejection region will have
probability α/2. In this case the two-sided p-value is computed by doubling the smaller of
the one sided values. We computed the right tail p-value just above. This is the smaller of
the two p-values so our two-sided p-value is 2× 0.03321 = 0.06642. This rounds to 0.07, so
the figure of 7% is the two-sided p-value.

Note: we could use the normal approximation

binomial(250, 0.5) ≈ N(125, 250/4)

and the z-statistic
x

z =
− 125√ N(0
250/4

≈ , 1)

15
one-sided: p = P (z ≥ √ )

250/4
≈ 0.02889.

15
two-sided: p = P (|z| ≥ √ ) 0

250/4
≈ .05778.

(b) We saw in part (a) that the quoted 7% was a two-sided p-value. So for the rest of this
problem we’ll use two-sided tests. The exact p-value was p = 0.066. Since 0.05 < p < 0.1
we reject H0 at significance α = 0.1 and don’t reject at α = 0.05.
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The figure shows the null distribution, the α = 0.1 rejection region (blue) and the α = 0.05
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rejection region (orange). Notice that the data x = 140 is in the 0.1 regection region but 
not the second. 

(c) The problem asks us to find the rejection region for α = 0.01. We use R to find the 
endpoints for the rejection region (called critical values): 

criticalPoint.left = qbinom(0.005,250,0.5) - 1 = 104
 

criticalPoint.right = qbinom(0.995,250,0.5) + 1 = 146
 

Note: we added or subtracted one to the value returned by qbinom for a discrete distribution 
like the binomial there is not an exact critical value. So qbinom(x, n, p) returns the 
smallest integer with more than x probability in its left tail. Since the rejection region must 
have at most α/2 in either tail we have to move the R answer by one towards the tail. 

Conclusion: we reject for greater than or equal to 146 heads or less than or equal to 104 
heads. 

(d) (i) For α = 0.05 the rejection region is given by the critical points 

criticalPoint.left = qbinom(0.025,250,0.5) - 1 = 109
 

criticalPoint.right = qbinom(0.975,250,0.5) + 1 = 141
 

power of HA = P (reject | HA) 

= P (x ≤ 109 or x ≥ 141 | HA) 

= sum(dbinom(0:109, 250, 0.55)) + sum(dbinom(141:250, 250,0.55)) = 0.35237 

Likewise 

power of H ′ = P (reject | H ′
A A)
 

= P (x ≤ 109 or x ≥ 141 | H ′

A) 

= sum(dbinom(0:109, 250, 0.6)) + sum(dbinom(141:250, 250,0.6)) = 0.88963 

(ii) The two plots below show the null distribution and the distribution of HA and H ′
A 

The green line below the graphs shows the rejection region. The greater power of H ′ isA 
explained by its greater separation from H0. Most of the probability of H ′ is over the right A 
side of the rejection region. 
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(e) The answer is n = 1055 with HA giving a power of 0.9003.

To get this we need to compute the power for various values of n. The steps for each n are
:
1. Find the rejection region.
2. Compute the power.

Here is the R-code for one value of n. Creating the loop to check through all values of n
until we find the first with power = 0.9 is in the posted code.

theta = 0.55

n = 300;

# Find critical points for rejection region (based on theta=0.5)

criticalPoint.left = qbinom(0.025,n,0.5) - 1;

criticalPoint.right = qbinom(0.975,n,0.5) + 1;

rejectionRegion = c(0:criticalPoint.left, criticalPoint.right:n)

power = sum(dbinom(rejectionRegion, n, theta))

print(power)

See the two plots with part (d): power increases as n increases because the distributions
become more separated.
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Plot for n = 1055 of the H0 and HA : θ = 0.55 distributions. The green lines show the
rejection region.

An alternative approach approximating the exact answer with normal distributions is given
at the end of these solutions.

(f) We use the usual Bayesian update table.
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Hypothesis prior likelihood posterior 
θ = 0.5 
θ = 0.55 

1/2 
1/2 

c1(0.5)
250 

c1(0.55)
140(0.45)110 

c2(0.5)
250 = 0.14757 

c2(0.55)
140(0.45)110 = 0.85243 

1 
The normalizing factor c2 = . 

(0.5)250 + (0.55)140(0.45)110 

The posterior probability that θ = 0.55 is 0.85. 

Note: if we used the beta(1, 1) prior on θ in [0,1] and used the data to update to a posterior 
of beta(141, 111) then the 90% probability interval is [0.501, 0.611]. Although p-values and 
posterior probability are measure different things. This probability interval and the 7% 
p-value seem similar in the belief they convey that the coin may be biased. 

(g) I’d go with the 90% probability interval discussed in part (f). It appears the coin is 
biased. 

Problem 2. (10 pts.) (a) Type I error is rejecting the null-hypothesis when it is indeed 
true. This corresponds to thinking someone is lying when they are in fact being truthful. 

9The experiment had 140 type I errors. This is our estimate of the probability of a type I 
error. 

Type II error is not rejecting the null-hypothesis when it is indeed false. This corresponds 
to thinking someone is telling the truth when they are in fact lying. Based on the data our 

15estimate of the probability of a Type II error is 140 . 

(b) Significance = P (type I error) = P (reject H0 | H0). 
Power = 1 - P (type II error) = P (reject H0 | HA). 

Problem 3. (10 pts.) (a) This is a two-sided alternative. The t-statistic is 

x̄− μ 1 √ = = 2. 
s/ n 2/4 

Since we have n = 16  our  t statistic has 15 degrees of freedom. 

We have the two-sided p-value 

p = P (|t| > 2|H0) =  2*(1-pt(2,15)) = 0.063945. 

Since p > α = 0.05 we don’t reject the null hypothesis. 

Alternatively we could have done the problem in terms of rejection regions. We are given 
x̄ = 11, s2 = 4,  and  n = 16. The null hypothesis is μ = 10. Using x̄ as our test statistic the 
rejection region is 

s s 
(−∞, 10 − t15,0.025 √ ] ∪ [10 + t15,0.025 √ ,∞) = (−∞, 8.93] ∪ [11.07,∞) 

n n 

Here t15,0.025 means a critical value, i.e. the value with right tail probability 0.025: for 
T ∼ t(15) we have P (t > t15,0.025) = 0.025. 

Since 11 lies outside the rejection region, we should not reject the null-hypothesis. 

(b) This is a one-sided alternative. The t-statistic is the same 

x̄− μ 1 √ = = 2. 
s/ n 2/4 

4

http:�)=(��,8.93
http:p>�=0.05


 18.05 Problem Set 7, Spring 2014 Solutions 

So we have the one-sided p-value 

p = P (t > 2|H0) =  2*(1-pt(2,15)) = 0.031973. 

Since p < α = 0.05 we reject the null hypothesis in favor of the alternative. 

Again looking at rejection regions. We use the critical value t15,0.05 ≈ 1.753. The rejection 
region for x̄ is 

s 
[10 + t √ ,∞) = [10.876,∞).15,0.05 

n 

Since 11 lies inside the rejection region, we should reject the null-hypothesis in favor of 
H1 : μ > 10. 

Problem 4. (10 pts.) (a) Let μ be the actual speed of a given driver. We are given that 

xi ∼ N(μ, 52) ⇒ x̄ ∼ N(μ, 52/3). 

The most natural hypotheses are:
 
H0: the driver is not speeding, i.e. μ ≤ 40.
 
HA: the driver is speeding, i.e. μ > 40.
 

Both are composite.
 

Note: we will work with H0: μ = 40, which is simple. 

(b) (i) Giving a ticket to a non-speeder is a type I error (rejecting H when it is true). 0 

H0 is composite, but we can do all our computations with the most extreme value μ = 40  
because the one-sided rejection region will have its largest significance level when μ = 40. 

So the null distribution is x̄ ∼ N(40, 52/3). The critical value is 

c0.04 = qnorm(0.96,40,5/sqrt(3)) = 45.054 

5(Equivalently c0.04 = 40 +  z0.04 √ = 45.054.)
3 

That is, they should issue a ticket if the average of the three guns is more than 45.054. 

(ii) Here is a plot of the null distribution N(40, 52/3). The rejection probability of 0.04 is 
shown. 

Null distribution for x_bar
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(c) Power = P (rejection | HA). So to find the power we first must find the rejection region. 
For n = 3 this was done in part (b): rejection region = [45.054,∞). So 

power = P (rejection |, μ = 45) = 1 - pnorm(45.054, 45, 5/sqrt(3)) = 0.493 
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With n cameras (guns) let’s write xn for the sample mean. The null distribution is 

x̄n ∼ N(40, 52/n) 

The critical value, i.e. the left endpoint of the rejection region, depends on n. Also, in 
order to do the computations algebraically we need to write everything in terms of standard 
normal values. √ 5 

c0.04 = qnorm(0.96, 40, 5/ n) = 40 +  z0.04 √ 
n 

where z0.04 is the standard normal critical value 

z0.04 = qnorm(0.96, 0, 1) = 1.751. 

We want 
power = P (x ≥ c0.04 | μ = 45) = 0.9 

Standardizing and doing some algebra we get     
x− 45 c0.04 − 45 −5 

P √ ≥ √ = 0.9 ⇒ P z ≥ √ + z0.04 = 0.9 
5/ n 5/ n 5/ n 

−5 
Thus √ + z = z0.9. We  get  

5/ n 0.04 

n = (z0.04 − z0.9)
2 = (1.7507 − (−1.2816))2 = 9.1945. 

Setting n to be the next biggest integer we get n = 10. 

We could do this all in R. The code for computing the power when n = 3 is shown below. 
Notice that we don’t have to phrase everything in terms of standard normal values to 
compute. You only have to change the first line to compute power for different values of n. 

n = 3 
  
mu = 40;
 
sigma = 5/sqrt(n);
 
alpha = 0.04;
 
xcrit = qnorm(1-alpha, mu, sigma);
 
power = 1-pnorm(xcrit, 45, sigma)
 

We could now use R to compute power for increasing values of n and see which value of n 
gives power more than 0.9. 

Problem 5. (10 pts.) (a) P (type I) = P (reject H0 | H0) =  P (x ≤ 0.1 or  x ≥ 1.9 | θ = 
0.2 

2) = = 0.1. 
2 

1.8 
(b) P (type II) = P (don’t reject H0 | θ = 2.5) = P (0.1 < x < 1.9 | θ = 2.5) = = 0.72. 

2.5 

Problem 6. (10 pts.) (a) The frequentist has hypotheses H0 = ‘the sun is okay’ 
HA = ‘the sun has gone nova’ 

The experimental data from the neutrino detector says the sun has gone nova. 
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The frequentist computes the p-value

p = P (sun gone nova |H0) =  P (computer lied) = 1/36 = .027

(Note: 1/36 is really 0.028 not 0.027) Since p <  0.05 the frequentist rejects H0 in favor of 
HA at significance level 0.05. 

This is problematic, the p-value is the probability assuming H0 of data ’at least as extreme’ 
as the data seen. How is that even defined in this case? 

Ignoring the p-value we can explain the comic more clearly. The rejection region = {the 
detector says yes}. The significance is 1/36 = 0.028. Therefore the frequentist rejects the 
null hypothesis and concludes the sun has gone nova at significance level 0.028. 

(b) The comic is pointing out the flaw of multiple testing or what’s sometimes called 
data mining. (The bad type of data mining, there is also a good type.) A significance 
level of 0.05 means that in 20 experiments where H0 is true we’d expect to reject it once. 
The scientists test 20 colors. So even if no jelly bean color causes cancer there is a high 
probability that one of the tests will produce a test statistic in the rejection region. 

The fix is to plan on doing  n tests and set the significance level for any one test to α/n. 
Then, assuming H0 is true for all the tests, the probability that at least one of them will 
reject is roughly n ∗ α/n = α. This is called the Bonferroni correction. (Actually, because 
of the possibility of multiple rejections the probabilitiy at least one will reject is less than 
or equal to α. 

Normal approximation to problem 1 (e). 

We use that binomial(n, θ) ≈ N(nθ, nθ(1 − θ)). The normal approximation introduces some 
error, but we can compute n directly instead of needing to search through a sequence of 
possible values. 

For α = 0.05 and θ = 0.5 the critical values are 
√ 
n 

c0.025 = n(0.5) + z0.025
2√ 
n 

c0.975 = n(0.5) − z0.025
2 

So when θ = 0.55 
√ √ 

n n n n 
power = P x ≤ − z0.025 | θ = 0.55 + P x ≥ + z0.025 | θ = 0.55 

2 2 2 2 

Standardizing assuming θ = 9.55: 

x − n(0.55) 
z = J 

n(0.55)(0.45) 

A little algebra gives 

7

http:n(0.55)(0.45


 18.05 Problem Set 7, Spring 2014 Solutions 

 √   √  
n nn/2 − z0.025 − n(0.55) n/2 +  z0.025 − n(0.55)2 2 power ≈ P z ≤ J + P z ≥ J 
n(0.55)(0.45) n(0.55)(0.45) √   √  

n n−0.05n − −0.05n +z0.025 z0.0252 2 = P z ≤ J + P z ≥ J 
n(0.55)(0.45) n(0.55)(0.45)

For n large the left hand probability is essentially 0. So to get power = 0.9 we need  √  
n−0.05n + z0.0252P z ≥ J = 0.9 

n(0.55)(0.45)

That is √ 
n−0.05n + z0.0252 J = z0.9 

n(0.55)(0.45) 

Using z0.025 = 1.96 and z0.9 = −1.2816 and solving for n we get n = 1047, which is very 
close to the exact answer of 1055. 
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