Part II Problems and Solutions

Problem 1: [Second order ODEs via Laplace transform] Find the unit impulse response of the following operators by means of the Laplace transform.

(a) 3D² + 6D + 6I.
(b) D⁴ - I.
Solution: (a) w(t) has Laplace t

Solution: (a) w(t) has Laplace transform $W(s) = \frac{1}{3s^2 + 6s + 6} = \frac{1}{3}\frac{1}{(s+1)^2 + 1}$. $\mathcal{L}(\sin t) = \frac{1}{s^2 + 1}$, so by *s*-shift $w(t) = \frac{1}{3}u(t)e^{-t}\sin t$. (b) $W(s) = \frac{1}{s^4 - 1}$. The roots of $s^4 - 1$ are ± 1 and $\pm i$, so we can write $\frac{1}{s^4 - 1} = \frac{a}{s-1} + \frac{b}{s+1} + \frac{c}{s-i} + \frac{d}{s+i}$. Cover-up gives easily $a = b = \frac{1}{4}$, $c = \frac{i}{4}, d = -\frac{i}{4}$. So $w(t) = u(t)\frac{1}{4} \left(e^t + e^{-t} + ie^{it} - ie^{-it}\right) = u(t)\frac{1}{2} (\sinh(t) - \sin(t))$ (where $\sinh(t) = \frac{1}{2} (e^t + e^{-t})$, the hyperbolic sine function) MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.