18.03SC Practice Problems 13

Undetermined coefficients

Solution suggestions:

1. Find the polynomial solution of $\ddot{x}-x=t^{2}+t+1$.

Since no term in the right hand side satisfies the associated homogeneous equation (the constant term in $p(D)=D^{2}-1$ is nonzero), we can use the method of undetermined coefficients to solve by guessing a quadratic solution $x(t)=a t^{2}+b t+c$ and determining the a, b and c that work by substituting the guessed general form for $x(t)$ into the differential equation and comparing both sides.
You can do this yourself by whatever method you feel most comfortable with. A graphical technique for carrying out the work is to make a table like the one below. Write out the multipliers of the system along the left, fill out the table from the bottom up, compute the right-hand side in the bottom row, and then read off the conditions that the coefficients of the guessed solution must satisfy.

$$
\begin{array}{rlr}
1 \mid \ddot{x} & = & 2 a \\
0 \mid \dot{x} & = & 2 a t+b \\
-1 \mid x & = & a t^{2}+b t+c \\
---- & ------- \\
t^{2}+t+1 & = & (-a) t^{2}+(-b) t+(2 a-c)
\end{array}
$$

Here the conditions we get are the three equations $-a=1,-b=1$ and $2 a-c=1$. Solving these equations simultaneously, we obtain that $a=-1, b=-1$ and $c=$ -3 .

So the polynomial solution of the equation is

$$
x(t)=-t^{2}-t-3 .
$$

As a sanity check, you can make sure this is indeed a solution by plugging it in to the original equation.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

