18.03SC Practice Problems 9

Solutions to second order ODEs

Solution suggestions

1. Check that both $x=\cos (\omega t)$ and $x=\sin (\omega t)$ satisfy the second order linear differential equation

$$
\ddot{x}+\omega^{2} x=0
$$

This equation is called the harmonic oscillator.
If $x=\cos (\omega t)$, then $\dot{x}=-\omega \sin (\omega t)$ and $\ddot{x}=-\omega^{2} \cos (\omega t)=-\omega^{2} x$. If $x=$ $\sin (\omega t)$, then $\dot{x}=\omega \cos (\omega t)$ and $\ddot{x}=-\omega^{2} \sin (\omega t)=-\omega^{2} x$.
2. In fact, check that any sinusoidal function with circular frequency $\omega, A \cos (\omega t-\phi)$, satisfies the equation $\ddot{x}+\omega^{2} x=0$.
If $x=A \cos (\omega t-\phi)$, then $\dot{x}=-A \omega \sin (\omega t-\phi)$, and $\ddot{x}=-A \omega^{2} \cos (\omega t-\phi)=$ $-\omega^{2} x$.
3. Among the functions $x(t)=A \cos (\omega t-\phi)$, which have $x(0)=0$? Doesn't this contradict the uniqueness theorem for differential equations?
$x(0)=A \cos \phi$. When $A=0$, then $x(t)=0$ for every t; when $A \neq 0, x(0)=0$ implies $\cos \phi=0$, and hence ϕ can be any odd multiple of $\pi / 2$. So, up to sign, the solutions that satisfy the given initial condition are $x(t)=A \cos (\omega t-\pi / 2)=$ $A \sin (\omega t)$, where $A \neq 0$ can be arbitrary.
This does not contradict the uniqueness theorem, because the uniqueness theorem as stated only applies to first order equations.
4. Given numbers x_{0} and \dot{x}_{0}, can you find a solution to $\ddot{x}+\omega^{2} x=0$ for which $x(0)=x_{0}$ and $\dot{x}(0)=\dot{x}_{0}$? How many such solutions are there?
The general solution to this differential equation is $x(t)=a \cos (\omega t)+b \sin (\omega t)$. Taking into account the given initial conditions, have $x(0)=a$, so $a=x_{0}$, and $x^{\prime}(0)=-a \omega \sin 0+b \omega \cos 0=b \omega=\dot{x}_{0}$, so $b=\dot{x}_{0} / \omega$. That is, the solution that satisfies the initial conditions is $x=x_{0} \cos (\omega t)+\frac{x_{0}}{\omega} \sin (\omega t)$, and there is only one such solution.
5. Let r denote a constant, which is perhaps complex valued. Suppose that $e^{r t}$ is a solution to $\ddot{x}+k x=0$. What does r have to be?
Let $x=e^{r t}$. Then $\dot{x}=r e^{r t}, \ddot{x}=r^{2} e^{r t}$, and $\ddot{x}+k x=\left(r^{2}+k\right) e^{r t}$. We want this to be zero. Since $e^{r t}$ is never zero, the other factor must be zero, and $r^{2}=-k$. That is, r must have the form $\pm i \sqrt{k}$ (this will be two real numbers if $k<0$).
6. Find a solution x_{1} to $\ddot{x}-a^{2} x=0$ [note the sign!] such that $x_{1}(0)=1$ and $\dot{x}_{1}(0)=0$. Find another solution x_{2} such that $x_{2}(0)=0$ and $\dot{x}_{2}(0)=1$.

We can assume $a \geq 0$. From Question 5 we know that both $x(t)=e^{a t}$ and $x(t)=$ $e^{-a t}$ are solutions to $\ddot{x}-a^{2} x=0$. Then for any constants c_{1} and $c_{2}, x(t)=c_{1} e^{a t}+$ $c_{2} e^{-a t}$ is also a solution to $\ddot{x}-a^{2} x=0$, with $x(0)=c_{1}+c_{2}$ and $\dot{x}(0)=a\left(c_{1}-c_{2}\right)$. So, for $a>0, x_{1}(t)$ must satisfy $c_{1}+c_{2}=1$ and $a\left(c_{1}-c_{2}\right)=0$, which implies
$c_{1}=c_{2}=1 / 2$. So

$$
x_{1}(t)=\frac{1}{2} e^{a t}+\frac{1}{2} e^{-a t}=\cosh (a t)
$$

For $x_{2}(t)$, need $c_{1}+c_{2}=0$ and $a\left(c_{1}-c_{2}\right)=1$, so $c_{1}=-c_{2}=\frac{1}{2 a}$ and

$$
x_{2}(t)=\frac{1}{2 a} e^{a t}-\frac{1}{2 a} e^{-a t}=\frac{1}{a} \sinh (a t) .
$$

If $a=0, x_{1}(t)=1$ and x_{2} does not exist.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

