18.03SC Practice Problems 9

Solutions to second order ODEs

Solution suggestions

1. Check that both $x = cos(\omega t)$ and $x = sin(\omega t)$ satisfy the second order linear differential equation

$$\ddot{x} + \omega^2 x = 0$$

This equation is called the harmonic oscillator.

If $x = \cos(\omega t)$, then $\dot{x} = -\omega \sin(\omega t)$ and $\ddot{x} = -\omega^2 \cos(\omega t) = -\omega^2 x$. If $x = \sin(\omega t)$, then $\dot{x} = \omega \cos(\omega t)$ and $\ddot{x} = -\omega^2 \sin(\omega t) = -\omega^2 x$.

2. In fact, check that any sinusoidal function with circular frequency ω , $A\cos(\omega t - \phi)$, satisfies the equation $\ddot{x} + \omega^2 x = 0$.

If $x = A\cos(\omega t - \phi)$, then $\dot{x} = -A\omega\sin(\omega t - \phi)$, and $\ddot{x} = -A\omega^2\cos(\omega t - \phi) = -\omega^2 x$.

3. Among the functions $x(t) = A\cos(\omega t - \phi)$, which have x(0) = 0? Doesn't this contradict the uniqueness theorem for differential equations?

 $x(0) = A \cos \phi$. When A = 0, then x(t) = 0 for every t; when $A \neq 0$, x(0) = 0 implies $\cos \phi = 0$, and hence ϕ can be any odd multiple of $\pi/2$. So, up to sign, the solutions that satisfy the given initial condition are $x(t) = A \cos(\omega t - \pi/2) = A \sin(\omega t)$, where $A \neq 0$ can be arbitrary.

This does not contradict the uniqueness theorem, because the uniqueness theorem as stated only applies to first order equations.

4. Given numbers x_0 and \dot{x}_0 , can you find a solution to $\ddot{x} + \omega^2 x = 0$ for which $x(0) = x_0$ and $\dot{x}(0) = \dot{x}_0$? How many such solutions are there?

The general solution to this differential equation is $x(t) = a \cos(\omega t) + b \sin(\omega t)$. Taking into account the given initial conditions, have x(0) = a, so $a = x_0$, and $x'(0) = -a\omega \sin 0 + b\omega \cos 0 = b\omega = \dot{x}_0$, so $b = \dot{x}_0/\omega$. That is, the solution that satisfies the initial conditions is $x = x_0 \cos(\omega t) + \frac{\dot{x}_0}{\omega} \sin(\omega t)$, and there is only one such solution.

5. Let *r* denote a constant, which is perhaps complex valued. Suppose that e^{rt} is a solution to $\ddot{x} + kx = 0$. What does *r* have to be?

Let $x = e^{rt}$. Then $\dot{x} = re^{rt}$, $\ddot{x} = r^2e^{rt}$, and $\ddot{x} + kx = (r^2 + k)e^{rt}$. We want this to be zero. Since e^{rt} is never zero, the other factor must be zero, and $r^2 = -k$. That is, r must have the form $\pm i\sqrt{k}$ (this will be two real numbers if k < 0).

6. Find a solution x_1 to $\ddot{x} - a^2 x = 0$ [note the sign!] such that $x_1(0) = 1$ and $\dot{x}_1(0) = 0$. Find another solution x_2 such that $x_2(0) = 0$ and $\dot{x}_2(0) = 1$.

We can assume $a \ge 0$. From Question 5 we know that both $x(t) = e^{at}$ and $x(t) = e^{-at}$ are solutions to $\ddot{x} - a^2x = 0$. Then for any constants c_1 and c_2 , $x(t) = c_1e^{at} + c_2e^{-at}$ is also a solution to $\ddot{x} - a^2x = 0$, with $x(0) = c_1 + c_2$ and $\dot{x}(0) = a(c_1 - c_2)$. So, for a > 0, $x_1(t)$ must satisfy $c_1 + c_2 = 1$ and $a(c_1 - c_2) = 0$, which implies $c_1 = c_2 = 1/2$. So

$$x_1(t) = \frac{1}{2}e^{at} + \frac{1}{2}e^{-at} = \cosh(at).$$

For $x_2(t)$, need $c_1 + c_2 = 0$ and $a(c_1 - c_2) = 1$, so $c_1 = -c_2 = \frac{1}{2a}$ and

$$x_{2}(t) = \frac{1}{2a}e^{at} - \frac{1}{2a}e^{-at} = \frac{1}{a}\sinh(at).$$

If a = 0, $x_1(t) = 1$ and x_2 does not exist.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.