18.03SC Practice Problems 9

Solutions to second order ODEs

1. Check that both $x=\cos (\omega t)$ and $x=\sin (\omega t)$ satisfy the second order linear differential equation

$$
\ddot{x}+\omega^{2} x=0
$$

This equation is called the harmonic oscillator.
2. In fact, check that the general sinusoidal function with circular frequency ω, $A \cos (\omega t-\phi)$, satisfies the equation $\ddot{x}+\omega^{2} x=0$.
3. Among the functions $x(t)=A \cos (\omega t-\phi)$, which have $x(0)=0$? Doesn't this contradict the uniqueness theorem for differential equations?
4. Given numbers x_{0} and \dot{x}_{0}, can you find a solution to $\ddot{x}+\omega^{2} x=0$ for which $x(0)=x_{0}$ and $\dot{x}(0)=\dot{x}_{0}$? How many such solutions are there?
5. Let r denote a constant, which is perhaps complex valued. Suppose that $e^{r t}$ is a solution to $\ddot{x}+k x=0$. What does r have to be?
6. Find a solution x_{1} to $\ddot{x}-a^{2} x=0$ [note the sign!] such that $x_{1}(0)=1$ and $\dot{x}_{1}(0)=0$. Find another solution x_{2} such that $x_{2}(0)=0$ and $\dot{x}_{2}(0)=1$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

