Part I Problems and Solutions

Find the general solution to the given DE and also the specific solution satisfying the given initial conditions (if any).

Problem 1: $\quad y^{\prime \prime}-3 y^{\prime}+2 y=0$
Solution: Characteristic equation $p(r)=r^{2}-3 r+2=0$ or $(r-1)(r-2)=0$ with roots $r=1,2$. Thus we have the general solution

$$
y=c_{1} e^{x}+c_{2} e^{2 x}
$$

Problem 2: $y^{\prime \prime}+2 y^{\prime}-3 y=0, \quad y(0)=1, \quad y^{\prime}(0)=-1$.
Solution: Characteristic equation $r^{2}+2 r-3=0$, or $(r+3)(r-1)=0$, so $y=c_{1} e^{x}+c_{2} e^{-3 x}$. Put in initial conditions:

$$
\begin{gathered}
y(0)=1 \Rightarrow c_{1}+c_{2}=1 \\
y^{\prime}(0)=-1 \Rightarrow c_{1}-3 c_{2}=-1
\end{gathered}
$$

Solve for c_{1}, c_{2}, and we get

$$
y=\frac{1}{2} e^{x}+\frac{1}{2} e^{-3 x}
$$

In the next three problems, find a DE of the form $a y^{\prime \prime}+b y^{\prime}+c y=0$ which has the given family of solutions $y=c_{1} y_{1}+c_{2} y_{2}$, with c_{1}, c_{2} constant.

Problem 3: $y=c_{1}+c_{2} e^{-5 x}$
Solution: $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$ with r_{1}, r_{2} roots of $p(r)=a r^{2}+b r+c \rightarrow P(r)=\left(r-r_{1}\right)(r-$ r_{2}).
In this problem, $r_{1}=0, r_{2}=-5$, so $p(r)=(r-0)(r+5)=r^{2}+5 r$. Thus, $a=1, b=5, c=$ 0 , so the DE $y^{\prime \prime}+5 y^{\prime}=0$ has these solutions.

Problem 4: $y=c_{1} e^{5 x}+c_{2} e^{-5 x}$
Solution: $r_{1}=5, r_{2}=-5$ so $p(r)=(r-5)(r+5)=r^{2}-25=a r^{2}+b r+c$ so $a=1, b=$ $0, c=-25$, and so the DE $y^{\prime \prime}-25 y=0$ has these solutions.

Problem 5: $y=c_{1}+c_{2} x$

Solution: $y^{\prime}=c_{2}$ and $y^{\prime \prime}=0$, so we can take $a=1, b=c=0$. Thus the DE $y^{\prime \prime}=0$ has these solutions.

In the next four problems, find the general solution of the given DE.
Problem 6: $\quad y^{\prime \prime}-4 y=0$
Solution: Characteristic equation $p(r)=r^{2}-4=0$ so roots are ± 2, and so $y=c_{1} e^{2 x}+$ $c_{2} e^{-2 x}$ is the general solution.

Problem 7: $2 y^{\prime \prime}-3 y^{\prime}=0$
Solution: Characteristic equation $p(r)=2 r^{2}-3 r=0$ has roots $0, \frac{3}{2}$, and so the general solution is

$$
y=c_{1}+c_{2} e^{\frac{3}{2} x}
$$

Problem 8: $\quad 4 y^{\prime \prime}-12 y^{\prime}+9 y=0$
Solution: Characteristic equation $p(r)=4 r^{2}-12 r+9=(2 r-3)^{2}=0$ so we have one repeated root $r=\frac{3}{2}$. Thus the solutions are

$$
y=c_{1} e^{\frac{3}{2} x}+c_{2} x e^{\frac{3}{2} x}
$$

Problem 9: $\quad y^{(4)}-8 y^{\prime \prime}+16 y=0$
Solution: Characteristic equation $p(r)=r^{4}-8 r^{2}+16=\left(r^{2}-4\right)^{2}=(r-2)^{2}(r+2)^{2}=0$. This has double roots at $r= \pm 2$, so the solutions are:

$$
y=c_{1} e^{2 x}+c_{2} x e^{2 x}+c_{3} e^{-2 x}+c_{4} x e^{-2 x}
$$

Find the general solution to the general DE and also the one satisfying the initial conditions (if any are given).

Problem 10: $\quad y^{\prime \prime}+2 y^{\prime}+2 y=0$
Solution: Char. eqn. $r^{2}+2 r+2=0$
By quadratic formula, $r=-1 \pm i$, so the general solution is $y=e^{-x}\left(c_{1} \cos x+c_{2} \sin x\right)$
(using as y_{1}, y_{2} the real and imaginary parts of the characteristic solution $y=e^{(-1+i) x}=$ $\left.e^{-x}(\cos x+i \sin x)\right)$

Problem 11: $y^{\prime \prime}-2 y^{\prime}+5 y=0 ; \quad y(0)=1, y^{\prime}(0)=-1$
Solution: Characteristic equation $r^{2}-2 r+5=0$. By quadratic formula, $r=1 \pm 2 i$.
General solution is thus $y=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)$
Putting in initial conditions (you'll need to find y^{\prime} first!):

$$
\begin{aligned}
y(0) & =1 \Rightarrow c_{1}=1 \\
y^{\prime}(0) & =1 \Rightarrow c_{1}+2 c_{2}=-1 \rightarrow c_{2}=-1
\end{aligned}
$$

so

$$
y=e^{x}(\cos 2 x-\sin 2 x)
$$

Problem 12: $\quad y^{\prime \prime}-4 y^{\prime}+4 y=0 ; \quad y(0)=1, y^{\prime}(0)=1$
Solution: Characteristic equation $r^{2}-4 r+4=0$ or $(r-2)^{2}=0 ; r=2$ double root. So $y=e^{2 x}\left(c_{1} x+c_{2}\right)$ is the general solution. Put in initial conditions:

$$
\begin{aligned}
y(0) & =1 \Rightarrow c_{2}=1 \\
y^{\prime}(0) & =1 \Rightarrow 2 c_{2}+c_{1}=1 \rightarrow c_{1}=-1
\end{aligned}
$$

So the solution is $\quad y=(1-x) e^{2 x}$.
Problem 13: Find the general solution to the DE $y^{\prime \prime}+6 y^{\prime}+9 y=0$
Solution: Characteristic equation $r^{2}+6 r+9=$ $(r+3)^{2}=0$ has a double root $r=-3$ so the general solution is $y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}$.

In the next two problems, solve the given initial-value problem.
Problem 14: $y^{\prime \prime}-4 y^{\prime}+3 y=0, \quad y(0)=7, y^{\prime}(0)=11$.

Solution: Characteristic equation $r^{2}-4 r+3=0 \rightarrow$ $(r-3)(r-1)=0$ with roots $r=1,3$ so the general solution to this DE is

$$
y=c_{1} e^{x}+c_{2} e^{3 x}
$$

IC's:

$$
\begin{array}{rlr}
y(0)=c_{1}+c_{2}=7 & c_{1}=5 \\
& \Rightarrow & \\
y^{\prime}(0)=c_{1}+3 c_{2}=11 & c_{2}=2
\end{array} \quad \Rightarrow y=5 e^{x}+2 e^{3 x}
$$

Problem 15: $y^{\prime \prime}-6 y^{\prime}+25 y=0, \quad y(0)=3, \quad y^{\prime}(0)=1$
Solution: Characteristic equation $r^{2}-6 r+25=0$ has roots $r=\frac{1}{2}(6 \pm \sqrt{36-100})=$ $\frac{1}{2}(6 \pm 8 i)=3 \pm 4 i$.
Real solutions are $y=e^{3 x}\left(c_{1} \cos 4 x+c_{2} \sin 4 x\right)$.
IC's: $y(0)=c_{1}=3, y^{\prime}(0)=3 c_{1}+4 c_{2}=1$ gives $c_{1}=3, c_{2}=-2$, so the solution is

$$
y=e^{3 x}(3 \cos 4 x-2 \sin 4 x)
$$

Problem 16: For the equation $y^{\prime \prime}+2 y^{\prime}+c y=0, \quad c$ constant,
a) Tell which values of correspond to each of the three cases: two real roots, repeated real root, and complex roots.
b) For the case of two real roots, tell for which values of c both roots are negative, both roots are positive, or the roots have different signs.
c) Summarize the above information by drawing a c-axis, and marking the intervals on it corresponding to the different possibilities for the roots of the characteristic equation.
d) Finally, use this information to mark the interval on the c-axis for which the corresponding ODE is stable. (The stability criterion using roots is what you will need.)

Solution: $y^{\prime \prime}+2 y^{\prime}+c y=0$ has characteristic equation $r^{2}+2 r+c=0$, with roots $-1 \pm$ $\sqrt{1-c}$. Below 0 , there is one negative and one positive root. At 0 , there is one root. Between 0 and 1, there are two real negative roots. At 1, there is one negative root. Greater than 1 , there are two complex roots with negative real part. The region below 0 is unstable; the rest of the axis is stable.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

