
Mechanical Vibration System: Driving Through the Spring 

The figure below shows a spring-mass-dashpot system that is driven 
through the spring. 
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Figure 1. Spring-driven system 

Suppose that y denotes the displacement of the plunger at the top of the 
spring and x(t) denotes the position of the mass, arranged so that x = y 
when the spring is unstretched and uncompressed. There are two forces 
acting on the mass: the spring exerts a force given by k(y − x) (where k is .
the spring constant) and the dashpot exerts a force given by −bx (against 
the motion of the mass, with damping coefficient b). Newton’s law gives 

.. . 
mx = k(y − x) − bx 

or, putting the system on the left and the driving term on the right, 

.. . 
mx + bx + kx = ky . (1) 

In this example it is natural to regard y, rather than the right-hand side 
q = ky, as the input signal and the mass position x as the system response. 
Suppose that y is sinusoidal, that is, 

y = B1 cos(ωt). 

Then we expect a sinusoidal solution of the form 

xp = A cos(ωt − φ). 
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By definition the gain is the ratio of the amplitude of the system response 
to that of the input signal. Since B1 is the amplitude of the input we have 
g = A/B1. 

In the previous note in this session, we worked out the formulas for g 
and φ, and so we can now use them with the following small change. The 
k on the right-hand-side of equation (1) needs to be included in the gain 
(since we don’t include it as part of the input). We get 

A k k 
g(ω) = = = 

B 2 2 2 2 1 |p(iω)| (k − mω ) + b ω

bω 
φ(ω) = tan−1 

  
k − mω2 

 
.

Note that the gain is a function of ω, i.e. g = g(ω). Similarly, the phase 
lag φ = φ(ω) is a function of ω. The entire story of the steady state system 
response xp = A cos(ωt − φ) to sinusoidal input signals is encoded in these 
two functions of ω, the gain and the phase lag. 

We see that choosing the input to be y instead of ky scales the gain by k 
and does not affect the phase lag. 

The factor of k in the gain does not affect the frequency where the gain 
is greatest, i.e. the practical resonant frequency. From the previous note in 
this session we know this is 
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Note: Another system leading to the same equation is a series RLC circuit. 
We will favor the mechanical system notation, but it is interesting to note 
the mathematics is exactly the same for both systems. 
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