Part II Problems

Problem 1: [Models and complex gain] This problem employs the Mathlet Amplitude and Phase: Second Order I, which illustrates the steady state sinusoidal system response of a spring/mass/dashpot system driven through the spring, as discussed in the session on Gain and Phase Lag. The amplitude of the input signal is 1 , so the amplitude of the system response is the gain. Select $b=0.5, k=4.00$, and $\omega=2.00$. Animate the system.
(a) Verify the displayed values of time lag and gain.
(b) The input signal in this system is the position $y(t)=\cos (\omega t)$ of the top of the spring (the cyan box). The system response is the position of the mass (the yellow box), and we are looking just at the steady state solution $x(t)$. Determine the complex gain for this system. From it determine the gain of the system, as a function of ω. Finally determine $\tan \phi$ where ϕ is the phase lag.

Problem 2: [Frequency response] This problem will use the applet Amplitude and Phase: Second Order I again (as in a previous problem). Set $k=4.00, b=0.50$. These settings will be in force for parts (a) through (c).
(a) In a previous problem you studied the response of this system when $\omega=2.00$. The gain is pretty large with that setting. Let's investigate the gain for other values of ω. You can see a graph of the gain as a function of the input circular frequency ω by invoking [Bode Plots]. The top window shows the gain as a function of ω, and the bottom window graphs $-\phi$ as a function of ω. Move the ω slider and verify that these readings correspond to the graph of the system response at left. You can see a readout of the value of the gain and the phase lag for the selected value of ω by rolling the cursor over the relevant window.
From your experimentation with the applet, do you believe that the gain maximal for $\omega=2.00$, or is the "practical resonance" peak at a different value of ω ?
In the previous problem mentioned you wrote down a formula for the gain as a function of ω (for these values of k and b), $g(\omega)$. Now find the value $\omega=\omega_{r}$ which maximizes $g(\omega)$. (Hint: it'll be easier to minimize the square of the denominator.) Is it at $\omega=2$? Finally, what is the maximal gain?
(b) Experiment to find the value of ω giving phase lag as close to 45° as you can. In previous problem mentioned you also gave a formula for $\tan \phi$. Determine the positive value of ω for which the phase lag equals 45°. Compare.
(c) Now invoke the [Nyquist Plot]. This shows the trajectory of the complex gain $H(\omega)$ as ω runs from 0 to ∞. The value of $H(\omega)$ corresponding to the selected value of ω is shown as a yellow diamond. This means that the length of the yellow strut equals the
gain, and the size of the green arc equals the phase lag. Again grab the ω slider and move it slowly from 0 to 4 . Please submit a sketch of the Nyquist plot with ω such that $\phi(\omega)$ is as close to $\frac{\pi}{4}$ as you can get it.
(d) Finally, set $\omega=2$ and leave $k=4.00$, but adjust the value of b by grabbing the b slider. What do you observe about the position of the yellow strut in the Nyquist plot? Try setting k to a different value, and adjust ω so that the phase lag is close to $\frac{\pi}{2}$. Now vary b and comment on what happens to the phase lag. Please explain this observation as follows. Write down a formula for the complex gain $H(\omega)$ for general values of b, k, and ω. What does $\phi=\frac{\pi}{2}$ say about the complex gain? Finally, what relationship does this imply about b, k, and ω ? Does this relationship explain your observation?

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

