Generalized Exponential Response Formula

We can also solve an LTI DE $p(D) x=q(t)$ with exponential input $q(t)=B e^{a t}$ even when $p(a)=0$. The answer is given by the following generalized Exponential Response formula (the proof of which we postpone to the session on Linear Operators.
Generalized Exponential Response Formula. Let $p(D)$ be a polynomial operator with constant coefficients, and $p^{(s)}$ its s-th derivative. Then

$$
p(D) x=B e^{a t}, \quad \text { where } a \text { is real or complex }
$$

has the particular solution

$$
x_{p}= \begin{cases}\frac{B e^{a t}}{p(a)} & \text { if } p(a) \neq 0 \\ \frac{B t e^{a t}}{p^{\prime}(a)} & \text { if } p(a)=0 \text { and } p^{\prime}(a) \neq 0 \\ \frac{B t^{2} e^{a t}}{p^{\prime \prime}(a)} & \text { if } p(a)=p^{\prime}(a)=0 \text { and } p^{\prime \prime}(a) \neq 0 \\ \cdots & \\ \frac{B t^{s} e^{a t}}{p^{(s)}(a)} & \text { if } a \text { is an s-fold zero }\end{cases}
$$

Note: Later when we cover resonance the case $p(a)=0, p^{\prime}(a) \neq 0$ will be called the Resonant Response Formula
Example 1. Find a particular solution to the equation

$$
\ddot{x}+8 \dot{x}+15 x=e^{-5 t}
$$

Solution. The characteristic polynomial is $p(r)=r^{2}+8 r+15$. Since $p(-5)=0$ we need to use the generalized ERF.
Computing $p^{\prime}(r)=2 r+8$, which implies $p^{\prime}(-5)=-2$. Therefore the generalized ERF gives

$$
x_{p}=\frac{t e^{-5 t}}{p^{\prime}(-5)}=-\frac{t e^{-5 t}}{2}
$$

Example 2. Find a particular solution to

$$
\ddot{x}+2 \dot{x}+2 x=e^{-t} \cos t .
$$

Solution. First we complexify the equation

$$
\ddot{z}+2 \dot{z}+2 z=e^{(-1+i) t}, \quad \text { where } \quad x=\operatorname{Re}(z) .
$$

The characteristic polynomial is $p(r)=r^{2}+2 r+2$. Computing,
$p(-1+i)=(-1+i)^{2}+2(-1+i)+2=0, \quad p^{\prime}(r)=2 r+2, \quad p^{\prime}(-1+i)=2 i$.
Since $p(-1+i)=0$ we use the generalized ERF

$$
z_{p}=\frac{t e^{(-1+i) t}}{p^{\prime}(-1+i)}=\frac{t e^{(-1+i) t}}{2 i}=\frac{t e^{-t}(\cos t+i \sin t)}{2 i}
$$

Finally we take the real part to get

$$
x_{p}=\operatorname{Re}\left(z_{p}\right)=\frac{t e^{-t} \sin t}{2} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

