## Sinusoidal Input

The exponential response formula works perfectly even if the number $a$ in the exponential is complex. Let's use this to solve problems with a sinusoidal driving.
Example. Find the general solution to

$$
x^{\prime \prime}+8 x^{\prime}+7 x=9 \cos (2 t) .
$$

We begin by using complex replacement and considering instead the equation

$$
\begin{equation*}
z^{\prime \prime}+8 z^{\prime}+7 z=9 e^{2 i t} . \tag{1}
\end{equation*}
$$

Now we can apply the exponential response formula to obtain as a particular solution,

$$
\begin{aligned}
z_{p}(t) & =\frac{9}{p(2 i)} e^{2 i t} \\
& =\frac{9}{(2 i)^{2}+16 i+7} e^{2 i t} \\
& =\frac{9}{3+16 i} e^{2 i t} .
\end{aligned}
$$

Be careful with signs when you do these calculations! Remember $i^{2}=-1$.
To get a particular solution to (1), we must take the real part. We prefer the solution in amplitude-phase form, so we write

$$
3+16 i=\sqrt{265} e^{i \phi} \quad \text { where } \quad \phi=\tan ^{-1}(16 / 3)
$$

Thus (be careful not to forget the factor of 9 in the complex solution)

$$
x_{p}(t)=\Re\left(z_{p}(t)\right)=\frac{9}{\sqrt{265}} \cos (2 t-\phi) .
$$

To get the general solution we must add the general solution of the homogeneous problem, which we already saw:

$$
x_{h}(t)=c_{1} e^{-7 t}+c_{2} e^{-t}
$$

Thus we obtain the general solution

$$
x=x_{p}+x_{h}=c_{1} e^{-7 t}+c_{2} e^{-t}+\frac{9}{\sqrt{265}} \cos (2 t-\phi) .
$$

Notice that in the example above, the amplitude of the particular solution is given by

$$
A=\frac{9}{|p(2 i)|}=\frac{9}{\sqrt{265}}
$$

If we consider the input to the system to be $9 \cos (2 t)$ then the input has amplitude 9 and the output amplitude is given by the input amplitude multiplied by $1 /|p(2 i)|$. This factor is called the gain of the system:

$$
\text { output amplitude }=\text { gain } \times \text { input amplitude }
$$

Said differently, the gain is the ratio of the output amplitude to the input amplitude.

Let's apply the above sequence of steps to the general case of a sinusoidal driving:

$$
m x^{\prime \prime}+b x^{\prime}+k x=B \cos (\omega t) .
$$

The complixified equation is

$$
m z^{\prime \prime}+b z+k z=B e^{i \omega t}
$$

From the exponential response formula with $a=i \omega$, a particular solution is

$$
z_{p}=\frac{B}{p(i \omega)} e^{i \omega t} .
$$

Converting to polar form and then taking the real part, we get

$$
x_{p}=\frac{B}{|p(i \omega)|} \cos (\omega t-\phi),
$$

where $\phi=\arg (p(i \omega))$. Notice that since $a=i \omega$, the gain is given by

$$
1 /|p(a)|=1 /|p(i \omega)| .
$$

In later sections we will go through the notion of input, and gain more carefully.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.03SC Differential Equations

Fall 2011]

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

