18.03SC Practice Problems 11

Exponential and sinusoidal input signals

1. Find A so that $A \sin (3 t)$ is a solution of $\ddot{x}+4 x=\sin (3 t)$.

What is the general solution?
2. For $\omega \geq 0$, find A such that $A \cos (\omega t)$ is a solution of $\ddot{x}+4 x=\cos (\omega t)$.

Graph the input signal $\cos (\omega t)$ and the solution $A \cos (\omega t)$ for $\omega=0, \omega=1$, and $\omega=3$.

Sketch a graph of A as a function of ω, as ω ranges from 0 to 5 . Where does resonance occur? What is the significance of the sign of A ?
3. Find an exponential solution of $\frac{d^{4} x}{d t^{4}}-x=e^{-2 t}$.
4. Find a sinusoidal solution of $\frac{d^{4} x}{d t^{4}}-x=\cos (2 t)$.
5. Find the general solution of the differential equations in (3) and (4).

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

