Part II Problems

Problem 1: [Sinusoidal input and output]

- (a) Express Re $\left(\frac{e^{3it}}{\sqrt{3}+i}\right)$ in the form $a\cos(3t)+b\sin(3t)$. Then rewrite this in the form $A\cos(3t-\phi)$. Now find this same answer using the following method. By finding its modulus and argument, write $\sqrt{3}+i$ in the form $Ae^{i\phi}$. Then substitute this into $e^{3it}/(\sqrt{3}+i)$, and use properties of the exponential function to find B and ϕ such that $\frac{e^{3it}}{\sqrt{3}+i}=Be^{i(3t-\phi)}$. Finally, take the real part of this new expression.
- **(b)** Find a solution to the differential equation $\dot{z} + 3z = e^{2it}$ of the form we^{2it} , where w is some complex number. What is the general solution?
- (c) Find a solution of $\dot{x} + 3x = \cos(2t)$ by relating this ODE to the one in (b). What is the general solution?

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.