Notations for Derivatives

We will write

$$
\frac{d y}{d x}, \quad y^{\prime} \quad \text { and } \quad D y
$$

to all mean the derivative of y with respect to x. Only the first one specifies the independent variable x. In the other two you can only determine the independent variable from context.

When the independent variable is time t we will usually adopt the physicists' notation \dot{x} for the derivative.

For second derivatives we have

$$
\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=D^{2} y
$$

all mean the second derivative of y with respect to x. If $x=x(t)$ is a function of time we will also write \ddot{x}.

For higher derivatives we will use the notations

$$
\frac{d^{n} y}{d x^{n}}=y^{(n)}=D^{n} y
$$

to mean the $n^{\text {th }}$ derivative.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations] [

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

