18.03SC Final Exam Solutions

1. (a) The isocline for slope 0 is the pair of straight lines $y = \pm x$. The direction field along these lines is flat.

The isocline for slope 2 is the hyperbola on the left and right of the straight lines. The direction field along this hyperbola has slope 2.

The isocline for slope -2 is the hyperbola above and below the straight lines. The direction field along this hyperbola has slope -2.

(b) The sketch should have the following features:

The curve passes through (-2, 0). The slope at (-2, 0) is $(-2)^2 - (0)^2 = 4$.

Going backward from (-2, 0), the curve goes down (dy/dx > 0), crosses the left branch of the hyperbola $x^2 - y^2 = 2$ with slope 2, and gets closer and closer to the line y = x but never touches it.

Going forward from (-2, 0), the curve first goes up, crosses the left branch of the hyperbola $x^2 - y^2 = 2$ with slope 2, and becomes flat when it intersects with y = -x. Then the curve goes down and stays between y = -x and the upper branch of the hyperbola $x^2 - y^2 = -2$, until it becomes flat as it crosses y = x. Finally, the curve goes up again and stays between y = x and the right branch of the hyperbola $x^2 - y^2 = -2$ until it leaves the box.

- (c) $f(100) \approx 100$.
- (d) It follows from the picture in (b) that f(x) reaches a local maximum on the line y = -x. Therefore f(a) = -a.
- (e) Since we know f(-2) = 0, to estimate f(-1) with two steps, the step size is 0.5. At each step, we calculate

$$x_n = x_{n-1} + 0.5,$$
 $y_n = y_{n-1} + 0.5(x_{n-1}^2 - y_{n-1}^2)$

The calculation is displayed in the following table.

n	x_n	y_n	$0.5(x_n^2 - y_n^2)$
0	-2	0	2
1	-1.5	2	-0.875
2	-1	1.125	

The estimate of f(-1) is $y_2 = 1.125$.

2. (a) The equation is $\dot{x} = x(x-1)(x-2)$. The phase line has three equilibria x = 0, 1, 2. For x < 0, the arrow points down.

For 0 < x < 1, the arrow points up.

For 1 < x < 2, the arrow points down.

For x > 2, the arrow points up.

(b) The horizontal axis is *t* and the vertical axis is *x*. There are three constant solutions $x(t) \equiv 0, 1, 2$. Their graphs are horizontal. Below x = 0, all solutions are decreasisng and they tend to $-\infty$.

Between x = 0 and x = 1, all solutions are increasing and they approach x = 1. Between x = 1 and x = 2, all solutions are decreasing and they approach x = 1. Above x = 2, all solutions are increasing and they tend to $+\infty$.

(c) A point of inflection (a, x(a)) is where \ddot{x} changes sign. In particular, $\ddot{x}(a)$ must be zero. Differentiating the given equation with respect to *t*, we have

$$\ddot{x} = 2\dot{x} - 6x\dot{x} + 3x^2\dot{x} = \dot{x}(2 - 6x + 3x^2).$$

If x(t) is not a constant solution, $\dot{x}(a) \neq 0$ so that x(a) must satisfy

$$2 - 6x(a) + 3x(a)^2 = 0 \quad \Leftrightarrow \quad x(a) = 1 \pm \frac{1}{\sqrt{3}}$$

(d) Let x(t) be the number of kilograms of Ct in the reactor at time t. The rate of loading is 1 kg per year. Hence x(t) satisfies $\dot{x} = -kx + 1$, where k is the decay rate of Ct. Since the half life of Ct is 2 years, $e^{-k \cdot 2} = 1/2$, so that $k = \ln(2)/2$. Therefore we have

$$\dot{x} = -\frac{\ln 2}{2}x + 1.$$

The initial condition is x(0) = 0.

(e) The differential equation is linear. Since we have

$$y' + \frac{3}{x}y = x,$$

an integrating factor is given by

$$\exp\left(\int \frac{3}{x}\,dx\right) = \exp(3\ln x) = x^3.$$

Multiply the above equation by x^3 and integrate:

$$(x^{3}y)' = x^{3}y' + 3x^{2}y = x^{4} \Rightarrow x^{3}y = \frac{1}{5}x^{5} + c.$$

Since y(1) = 1, we have c = 4/5 and

$$y = \frac{1}{5}x^2 + \frac{4}{5}x^{-3}.$$

3. (a) Express all compex numbers in polar form:

$$\frac{ie^{2it}}{1+i} = \frac{e^{i\pi/2}e^{2it}}{\sqrt{2}e^{i\pi/4}} = \frac{1}{\sqrt{2}}e^{i(2t+\pi/2-\pi/4)} = \frac{1}{\sqrt{2}}e^{i(2t-\pi/4)}$$

The real part is

$$\operatorname{Re}\left(\frac{ie^{2it}}{1+i}\right) = \frac{1}{\sqrt{2}}\cos\left(2t + \frac{\pi}{4}\right).$$

- (b) The trajectory is an outgoing, clockwise spiral that passes through 1.
- (c) The polar form of 8i is $8e^{i\pi/2}$. Its three cubic roots are

$$2e^{i\pi/6} = 2\cos\frac{\pi}{6} + 2i\sin\frac{\pi}{6} = \sqrt{3} + i,$$

$$2e^{i(\pi/6 + 2\pi/3)} = 2\cos\frac{5\pi}{6} + 2i\sin\frac{5\pi}{6} = -\sqrt{3} + i,$$

$$2e^{i(\pi/6 + 4\pi/3)} = 2e^{3i\pi/2} = -2i.$$

4. (a) Let $x_p(t) = at^2 + bt + c$. Plug it into the left hand side of the equation

$$\ddot{x} + 2\dot{x} + 2x = (2a) + 2(2at+b) + 2(at^2 + bt + c)$$
$$= 2at^2 + (4a+2b)t + (2a+2b+2c)$$

and compare coefficients

$$2a = 1,$$
 $4a + 2b = 0,$ $2a + 2b + 2c = 1.$

The solution is a = 1/2, b = -1, c = 1. Therefore $x_p(t) = \frac{1}{2}t^2 - t + 1$.

(b) The characteristic polynomial is $p(s) = s^2 + 2s + 2$. Using the ERF and linearity,

$$x_p(t) = \frac{e^{-2t}}{p(-2)} + \frac{1}{p(0)} = \frac{e^{-2t}}{2} + \frac{1}{2}$$

(c) Consider the complex equation

$$\ddot{z} + 2\dot{z} + 2z = e^{it}.$$

For any solution z_p , its imaginary part $x_p = \text{Im} z_p$ satisfies the real equation

$$\ddot{x} + 2\dot{x} + 2x = \sin t.$$

The ERF provides a particular solution of the complex equation

$$z_p(t) = \frac{e^{it}}{p(i)} = \frac{e^{it}}{1+2i} = \frac{e^{it}}{\sqrt{5}e^{i\phi}} = \frac{1}{\sqrt{5}}e^{i(t-\phi)}$$

where ϕ is the polar angle of 1 + 2i. Take the imaginary part of z_p

$$x_p(t) = \operatorname{Im} z_p(t) = \frac{1}{\sqrt{5}} \sin(t - \phi)$$

This is a sinusoidal solution of the real equation. Its amplitude is $1/\sqrt{5}$.

- (d) If $x(t) = t^3$ is a solution, then $q(t) = \ddot{x} + 2\dot{x} + 2x = 6t + 6t^2 + t^3$.
- (e) The general solution is $x(t) = t^3 + x_h(t)$, where $x_h(t)$ is a solution of the associated homogeneous equation. Since the characteristic polynomial $s^2 + 2s + 2$ has roots $-1 \pm i$,

$$x(t) = t^3 + x_h(t) = t^3 + c_1 e^{-t} \cos t + c_2 e^{-t} \sin t.$$

- 5. (a) See the formula sheet for the definition of sq(t). The graph of f(t) is a square wave of period 2π . It has a horizontal line segment of height 1 in the range $-\pi/2 < t < \pi/2$ and a horizontal line segment of height -1 in the range $\pi/2 < t < 3\pi/2$.
 - (b) Replace t by $t + \pi/2$ in the definition of sq(t)

$$f(t) = \operatorname{sq}\left(t + \frac{\pi}{2}\right) = \frac{4}{\pi} \left[\sin\left(t + \frac{\pi}{2}\right) + \frac{1}{3}\sin\left(3t + \frac{3\pi}{2}\right) + \frac{1}{5}\sin\left(5t + \frac{5\pi}{2}\right) + \dots \right]$$
$$= \frac{4}{\pi} \left(\cos t - \frac{1}{3}\cos 3t + \frac{1}{5}\cos 5t + \dots \right)$$

(c) First consider the complex equation

$$\ddot{z} + z = e^{int}$$
 for a positive integer *n*.

The characteristic polynomial is $p(s) = s^2 + 1$. One of the ERFs provides a particular solution of the complex equation

$$z_p(t) = \frac{e^{int}}{p(in)} = \frac{e^{int}}{1 - n^2}, \qquad n \neq 1$$
$$z_p(t) = \frac{te^{it}}{p'(i)} = \frac{te^{int}}{2i}, \qquad n = 1$$

The imaginary parts of these functions

$$u_p(t) = \operatorname{Im}\left(\frac{e^{int}}{1-n^2}\right) = \frac{\sin nt}{1-n^2}, \qquad n \neq 1$$
$$u_p(t) = \operatorname{Im}\left(\frac{te^{it}}{2i}\right) = -\frac{1}{2}t\cos t, \qquad n = 1$$

satisfy the imaginary part of the above complex equation, namely

$$\ddot{u} + u = \sin nt.$$

By linearity, a solution of $\ddot{x} + x = sq(t)$ is given by

$$x_p(t) = \frac{4}{\pi} \left(-\frac{1}{2} t \cos t + \frac{1}{3} \cdot \frac{\sin 3t}{1 - 3^2} + \frac{1}{5} \cdot \frac{\sin 5t}{1 - 5^2} + \dots \right).$$

6. (a) For t < 0, the graph is flat on t-axis.

For 0 < t < 1, the graph is flat at 1 unit above *t*-axis. For 1 < t < 3, the graph is flat at 1 unit below *t*-axis. For 3 < t < 4, the graph is flat at 1 unit above *t*-axis. For t > 4, the graph is flat on *t*-axis.

(b)
$$v(t) = [u(t) - u(t-1)] - [u(t-1) - u(t-3)] + [u(t-3) - u(t-4)]$$

= $u(t) - 2u(t-1) + 2u(t-3) - u(t-4)$

- (c) The graph coincides with t-axis for all t, except for two upward spikes at t = 0, 3 and two downward spikes at t = 1, 4.
- (d) $\dot{v}(t) = \delta(t) 2\delta(t-1) + 2\delta(t-3) \delta(t-4)$
- (e) By the fundamental solution theorem (a.k.a. Green's formula),

$$x(t) = (q * w)(t) = \int_0^t q(t - \tau)w(\tau) \, d\tau = \int_{a(t)}^{b(t)} w(\tau) \, d\tau$$

Now $q(t - \tau) = 1$ only for $0 < t - \tau < 1$, or $t - 1 < \tau < t$, and it is zero elsewhere. Therefore the upper limit b(t) equals t. The lower limit a(t) is t - 1 if t - 1 > 0, or 0 if t - 1 < 0. In other words, a(t) = (t - 1)u(t - 1).

- 7. (a) The transfer function is $W(s) = \frac{1}{p(s)} = \frac{1}{2s^2 + 8s + 16}$.
 - (b) The unit impulse response w(t) is the inverse Laplace transform of W(s). In other words,

$$\mathcal{L}(w(t)) = \frac{1}{2s^2 + 8s + 16} = \frac{1}{2[(s+2)^2 + 4]}$$

$$\Rightarrow \quad \mathcal{L}(e^{2t}w(t)) = \frac{1}{2(s^2 + 4)} = \frac{1}{4}\mathcal{L}(\sin 2t)$$

Therefore $e^{2t}w(t) = \frac{1}{4}\sin 2t$, and $w(t) = \frac{1}{4}e^{-2t}\sin 2t$.

(c) Take the Laplace transform of

$$p(D)x = 2\ddot{x}(t) + 8\dot{x}(t) + 16x(t) = \sin t$$

with the initial conditions x(0+) = 1, $\dot{x}(0+) = 2$. This yields

$$2[s^{2}X(s) - s - 2] + 8[sX(s) - 1] + 16X(s) = \frac{1}{s^{2} + 1}$$

$$\Rightarrow \quad X(s) = \frac{1}{2s^{2} + 8s + 16} \left(\frac{1}{s^{2} + 1} + 2s + 12\right)$$

8. (a) The characteristic polynomial of A is

$$\det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 12\\ 3 & 2 - \lambda \end{bmatrix} = (2 - \lambda)^2 - 36 = (\lambda - 8)(\lambda + 4).$$

Therefore the eigenvalues are $\lambda = 8, -4$.

(b) For
$$\lambda = 8$$
, solve $(A - 8I)\mathbf{v} = \mathbf{0}$. Since $A - 8I = \begin{bmatrix} -6 & 12 \\ 3 & -6 \end{bmatrix}$, a solution is $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
For $\lambda = -4$, solve $(A + 4I)\mathbf{v} = \mathbf{0}$. Since $A + 4I = \begin{bmatrix} 6 & 12 \\ 3 & 6 \end{bmatrix}$, a solution is $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

(c) The following is a fundamental matrix for $\dot{\mathbf{u}} = B\mathbf{u}$

$$F(t) = \begin{bmatrix} e^t & -e^{2t} \\ e^t & e^{2t} \end{bmatrix}$$

Then e^{tB} can be computed as $F(t)F(0)^{-1}$.

$$F(0) = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \qquad F(0)^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
$$e^{tB} = F(t)F(0)^{-1} = \begin{bmatrix} e^t & -e^{2t} \\ e^t & e^{2t} \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} e^t + e^{2t} & e^t - e^{2t} \\ e^t - e^{2t} & e^t + e^{2t} \end{bmatrix}$$

(d) The general solution of $\dot{\mathbf{u}} = B\mathbf{u}$ is

$$\mathbf{u}(t) = c_1 \begin{bmatrix} e^t \\ e^t \end{bmatrix} + c_2 \begin{bmatrix} -e^{2t} \\ e^{2t} \end{bmatrix} = F(t) \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

The given initial condition implies

$$\begin{bmatrix} 2\\1 \end{bmatrix} = F(0) \begin{bmatrix} c_1\\c_2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} c_1\\c_2 \end{bmatrix} = F(0)^{-1} \begin{bmatrix} 2\\1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1\\-1 & 1 \end{bmatrix} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 3/2\\-1/2 \end{bmatrix}$$
the solution of the initial value problem is $\mathbf{u}(t) = \begin{bmatrix} 1\\3e^t + e^{2t} \end{bmatrix}$

Therefore the solution of the initial value problem is $\mathbf{u}(t) = \frac{1}{2} \begin{bmatrix} 3e^{t} + e^{t} \\ 3e^{t} - e^{2t} \end{bmatrix}$.

- 9. (a) The phase portrait has the following features:
 - All trajectories start at (0,0) and run off to infinity.
 - There are straight line trajectories along the lines $y = \pm x$.
 - All other trajectories are tangent to y = x at (0,0).
 - No two trajectories cross each other.

(b) Tr
$$A = a + 1$$
, det $A = a + 4$, $\Delta = (\text{Tr } A)^2 - 4(\det A) = (a - 5)(a + 3)$

- (i) $\det A < 0 \quad \Leftrightarrow \quad a < -4$
- (ii) not for any a
- (iii) $\Delta > 0$, Tr A < 0 and det $A > 0 \iff -4 < a < -3$
- (iv) $\Delta < 0$ and $\operatorname{Tr} A < 0 \quad \Leftrightarrow \quad -3 < a < -1$; counterclockwise
- $(\mathbf{v}) \quad \Delta < 0 \text{ and } \operatorname{Tr} A > 0 \quad \Leftrightarrow \quad -1 < a < 5$
- (vi) $\Delta = 0$ and Tr $A > 0 \Leftrightarrow a = 5$
- 10. (a) The equilibria are the solutions of

$$\dot{x} = x^2 - y^2 = 0, \qquad \dot{y} = x^2 + y^2 - 8 = 0.$$

This implies $(x^2, y^2) = (4, 4)$, so that (x, y) = (2, 2), (2, -2), (-2, 2), (-2, -2).(b) The Jacobian is $J(x, y) = \begin{bmatrix} 2x & -2y \\ 2x & 2y \end{bmatrix}$. In particular, $J(-2, -2) = \begin{bmatrix} -4 & 4 \\ -4 & -4 \end{bmatrix}$. (c) The linearization of the nonlinear system at (-2, -2) is the linear system $\dot{\mathbf{u}} = J(-2, -2)\mathbf{u}$. A computation shows that the eigenvalues of J(-2, -2) are $-4 \pm 4i$. The first component of $\mathbf{u}(t)$ is of the form

$$c_1 e^{-4t} \cos 4t + c_2 e^{-4t} \sin 4t = A e^{-4t} \cos(4t - \phi).$$

This means $x(t) \approx -2 + Ae^{-4t}\cos(4t - \phi)$ near (-2, -2).

(d) Let $f(x) = 2x - 3x^2 + x^3$. The phase line in problem 2(a) shows that $\dot{x} = f(x)$ has a stable equilibrium at x = 1.

The linearization of the nonlinear equation at x = 1 is the linear equation $\dot{u} = f'(1)u = -u$. Its solutions are $u(t) = Ae^{-t}$. This means $x(t) \approx 1 + Ae^{-t}$ near x = 1.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.