18.03SC Final Exam Solutions

1. (a) The isocline for slope 0 is the pair of straight lines $y= \pm x$. The direction field along these lines is flat.
The isocline for slope 2 is the hyperbola on the left and right of the straight lines. The direction field along this hyperbola has slope 2.
The isocline for slope -2 is the hyperbola above and below the straight lines. The direction field along this hyperbola has slope -2 .
(b) The sketch should have the following features:

The curve passes through $(-2,0)$. The slope at $(-2,0)$ is $(-2)^{2}-(0)^{2}=4$.
Going backward from ($-2,0$), the curve goes down $(d y / d x>0)$, crosses the left branch of the hyperbola $x^{2}-y^{2}=2$ with slope 2 , and gets closer and closer to the line $y=x$ but never touches it.
Going forward from $(-2,0)$, the curve first goes up, crosses the left branch of the hyperbola $x^{2}-y^{2}=2$ with slope 2 , and becomes flat when it intersects with $y=-x$. Then the curve goes down and stays between $y=-x$ and the upper branch of the hyperbola $x^{2}-y^{2}=-2$, until it becomes flat as it crosses $y=x$. Finally, the curve goes up again and stays between $y=x$ and the right branch of the hyperbola $x^{2}-y^{2}=2$ until it leaves the box.
(c) $f(100) \approx 100$.
(d) It follows from the picture in (b) that $f(x)$ reaches a local maximum on the line $y=-x$. Therefore $f(a)=-a$.
(e) Since we know $f(-2)=0$, to estimate $f(-1)$ with two steps, the step size is 0.5 . At each step, we calculate

$$
x_{n}=x_{n-1}+0.5, \quad y_{n}=y_{n-1}+0.5\left(x_{n-1}^{2}-y_{n-1}^{2}\right)
$$

The calculation is displayed in the following table.

n	x_{n}	y_{n}	$0.5\left(x_{n}^{2}-y_{n}^{2}\right)$
0	-2	0	2
1	-1.5	2	-0.875
2	-1	1.125	

The estimate of $f(-1)$ is $y_{2}=1.125$.
2. (a) The equation is $\dot{x}=x(x-1)(x-2)$. The phase line has three equilibria $x=0,1,2$. For $x<0$, the arrow points down.
For $0<x<1$, the arrow points up.
For $1<x<2$, the arrow points down.
For $x>2$, the arrow points up.
(b) The horizontal axis is t and the vertical axis is x. There are three constant solutions $x(t) \equiv 0,1,2$. Their graphs are horizontal. Below $x=0$, all solutions are decreasisng and they tend to $-\infty$.

Between $x=0$ and $x=1$, all solutions are increasing and they approach $x=1$.
Between $x=1$ and $x=2$, all solutions are decreasing and they approach $x=1$.
Above $x=2$, all solutions are increasing and they tend to $+\infty$.
(c) A point of inflection $(a, x(a))$ is where \ddot{x} changes sign. In particular, $\ddot{x}(a)$ must be zero. Differentiating the given equation with respect to t, we have

$$
\ddot{x}=2 \dot{x}-6 x \dot{x}+3 x^{2} \dot{x}=\dot{x}\left(2-6 x+3 x^{2}\right) .
$$

If $x(t)$ is not a constant solution, $\dot{x}(a) \neq 0$ so that $x(a)$ must satisfy

$$
2-6 x(a)+3 x(a)^{2}=0 \quad \Leftrightarrow \quad x(a)=1 \pm \frac{1}{\sqrt{3}} .
$$

(d) Let $x(t)$ be the number of kilograms of Ct in the reactor at time t. The rate of loading is 1 kg per year. Hence $x(t)$ satisfies $\dot{x}=-k x+1$, where k is the decay rate of Ct . Since the half life of Ct is 2 years, $e^{-k \cdot 2}=1 / 2$, so that $k=\ln (2) / 2$. Therefore we have

$$
\dot{x}=-\frac{\ln 2}{2} x+1 .
$$

The initial condition is $x(0)=0$.
(e) The differential equation is linear. Since we have

$$
y^{\prime}+\frac{3}{x} y=x
$$

an integrating factor is given by

$$
\exp \left(\int \frac{3}{x} d x\right)=\exp (3 \ln x)=x^{3}
$$

Multiply the above equation by x^{3} and integrate:

$$
\left(x^{3} y\right)^{\prime}=x^{3} y^{\prime}+3 x^{2} y=x^{4} \quad \Rightarrow \quad x^{3} y=\frac{1}{5} x^{5}+c
$$

Since $y(1)=1$, we have $c=4 / 5$ and

$$
y=\frac{1}{5} x^{2}+\frac{4}{5} x^{-3} .
$$

3. (a) Express all compex numbers in polar form:

$$
\frac{i e^{2 i t}}{1+i}=\frac{e^{i \pi / 2} e^{2 i t}}{\sqrt{2} e^{i \pi / 4}}=\frac{1}{\sqrt{2}} e^{i(2 t+\pi / 2-\pi / 4)}=\frac{1}{\sqrt{2}} e^{i(2 t-\pi / 4)}
$$

The real part is

$$
\operatorname{Re}\left(\frac{i e^{2 i t}}{1+i}\right)=\frac{1}{\sqrt{2}} \cos \left(2 t+\frac{\pi}{4}\right)
$$

(b) The trajectory is an outgoing, clockwise spiral that passes through 1.
(c) The polar form of $8 i$ is $8 e^{i \pi / 2}$. Its three cubic roots are

$$
\begin{aligned}
2 e^{i \pi / 6} & =2 \cos \frac{\pi}{6}+2 i \sin \frac{\pi}{6}=\sqrt{3}+i, \\
2 e^{i(\pi / 6+2 \pi / 3)} & =2 \cos \frac{5 \pi}{6}+2 i \sin \frac{5 \pi}{6}=-\sqrt{3}+i, \\
2 e^{i(\pi / 6+4 \pi / 3)} & =2 e^{3 i \pi / 2}=-2 i .
\end{aligned}
$$

4. (a) Let $x_{p}(t)=a t^{2}+b t+c$. Plug it into the left hand side of the equation

$$
\begin{aligned}
\ddot{x}+2 \dot{x}+2 x & =(2 a)+2(2 a t+b)+2\left(a t^{2}+b t+c\right) \\
& =2 a t^{2}+(4 a+2 b) t+(2 a+2 b+2 c)
\end{aligned}
$$

and compare coefficients

$$
2 a=1, \quad 4 a+2 b=0, \quad 2 a+2 b+2 c=1 .
$$

The solution is $a=1 / 2, b=-1, c=1$. Therefore $x_{p}(t)=\frac{1}{2} t^{2}-t+1$.
(b) The characteristic polynomial is $p(s)=s^{2}+2 s+2$. Using the ERF and linearity,

$$
x_{p}(t)=\frac{e^{-2 t}}{p(-2)}+\frac{1}{p(0)}=\frac{e^{-2 t}}{2}+\frac{1}{2}
$$

(c) Consider the complex equation

$$
\ddot{z}+2 \dot{z}+2 z=e^{i t} .
$$

For any solution z_{p}, its imaginary part $x_{p}=\operatorname{Im} z_{p}$ satisfies the real equation

$$
\ddot{x}+2 \dot{x}+2 x=\sin t .
$$

The ERF provides a particular solution of the complex equation

$$
z_{p}(t)=\frac{e^{i t}}{p(i)}=\frac{e^{i t}}{1+2 i}=\frac{e^{i t}}{\sqrt{5} e^{i \phi}}=\frac{1}{\sqrt{5}} e^{i(t-\phi)}
$$

where ϕ is the polar angle of $1+2 i$. Take the imaginary part of z_{p}

$$
x_{p}(t)=\operatorname{Im} z_{p}(t)=\frac{1}{\sqrt{5}} \sin (t-\phi)
$$

This is a sinusoidal solution of the real equation. Its amplitude is $1 / \sqrt{5}$.
(d) If $x(t)=t^{3}$ is a solution, then $q(t)=\ddot{x}+2 \dot{x}+2 x=6 t+6 t^{2}+t^{3}$.
(e) The general solution is $x(t)=t^{3}+x_{h}(t)$, where $x_{h}(t)$ is a solution of the associated homogeneous equation. Since the characteristic polynomial $s^{2}+2 s+2$ has roots $-1 \pm i$,

$$
x(t)=t^{3}+x_{h}(t)=t^{3}+c_{1} e^{-t} \cos t+c_{2} e^{-t} \sin t .
$$

5. (a) See the formula sheet for the definition of $\operatorname{sq}(t)$. The graph of $f(t)$ is a square wave of period 2π. It has a horizontal line segment of height 1 in the range $-\pi / 2<t<\pi / 2$ and a horizontal line segment of height -1 in the range $\pi / 2<t<3 \pi / 2$.
(b) Replace t by $t+\pi / 2$ in the definition of $\operatorname{sq}(t)$

$$
\begin{aligned}
f(t)=\mathrm{sq}\left(t+\frac{\pi}{2}\right) & =\frac{4}{\pi}\left[\sin \left(t+\frac{\pi}{2}\right)+\frac{1}{3} \sin \left(3 t+\frac{3 \pi}{2}\right)+\frac{1}{5} \sin \left(5 t+\frac{5 \pi}{2}\right)+\ldots\right] \\
& =\frac{4}{\pi}\left(\cos t-\frac{1}{3} \cos 3 t+\frac{1}{5} \cos 5 t+\ldots\right)
\end{aligned}
$$

(c) First consider the complex equation

$$
\ddot{z}+z=e^{i n t} \quad \text { for a positive integer } n .
$$

The characteristic polynomial is $p(s)=s^{2}+1$. One of the ERFs provides a particular solution of the complex equation

$$
\begin{aligned}
& z_{p}(t)=\frac{e^{i n t}}{p(i n)}=\frac{e^{i n t}}{1-n^{2}}, \quad n \neq 1 \\
& z_{p}(t)=\frac{t e^{i t}}{p^{\prime}(i)}=\frac{t e^{i n t}}{2 i}, \quad n=1
\end{aligned}
$$

The imaginary parts of these functions

$$
\begin{array}{ll}
u_{p}(t)=\operatorname{Im}\left(\frac{e^{i n t}}{1-n^{2}}\right)=\frac{\sin n t}{1-n^{2}}, & n \neq 1 \\
u_{p}(t)=\operatorname{Im}\left(\frac{t e^{i t}}{2 i}\right)=-\frac{1}{2} t \cos t, & n=1
\end{array}
$$

satisfy the imaginary part of the above complex equation, namely

$$
\ddot{u}+u=\sin n t .
$$

By linearity, a solution of $\ddot{x}+x=\mathrm{sq}(t)$ is given by

$$
x_{p}(t)=\frac{4}{\pi}\left(-\frac{1}{2} t \cos t+\frac{1}{3} \cdot \frac{\sin 3 t}{1-3^{2}}+\frac{1}{5} \cdot \frac{\sin 5 t}{1-5^{2}}+\ldots\right) .
$$

6. (a) For $t<0$, the graph is flat on t-axis.

For $0<t<1$, the graph is flat at 1 unit above t-axis.
For $1<t<3$, the graph is flat at 1 unit below t-axis.
For $3<t<4$, the graph is flat at 1 unit above t-axis.
For $t>4$, the graph is flat on t-axis.
(b) $\quad v(t)=[u(t)-u(t-1)]-[u(t-1)-u(t-3)]+[u(t-3)-u(t-4)]$
$=u(t)-2 u(t-1)+2 u(t-3)-u(t-4)$
(c) The graph coincides with t-axis for all t, except for two upward spikes at $t=0,3$ and two downward spikes at $t=1,4$.
(d) $\dot{v}(t)=\delta(t)-2 \delta(t-1)+2 \delta(t-3)-\delta(t-4)$
(e) By the fundamental solution theorem (a.k.a. Green's formula),

$$
x(t)=(q * w)(t)=\int_{0}^{t} q(t-\tau) w(\tau) d \tau=\int_{a(t)}^{b(t)} w(\tau) d \tau
$$

Now $q(t-\tau)=1$ only for $0<t-\tau<1$, or $t-1<\tau<t$, and it is zero elsewhere. Therefore the upper limit $b(t)$ equals t. The lower limit $a(t)$ is $t-1$ if $t-1>0$, or 0 if $t-1<0$. In other words, $a(t)=(t-1) u(t-1)$.
7. (a) The transfer function is $W(s)=\frac{1}{p(s)}=\frac{1}{2 s^{2}+8 s+16}$.
(b) The unit impulse response $w(t)$ is the inverse Laplace transform of $W(s)$. In other words,

$$
\begin{aligned}
\mathcal{L}(w(t)) & =\frac{1}{2 s^{2}+8 s+16}=\frac{1}{2\left[(s+2)^{2}+4\right]} \\
\Rightarrow \quad \mathcal{L}\left(e^{2 t} w(t)\right) & =\frac{1}{2\left(s^{2}+4\right)}=\frac{1}{4} \mathcal{L}(\sin 2 t)
\end{aligned}
$$

Therefore $e^{2 t} w(t)=\frac{1}{4} \sin 2 t$, and $w(t)=\frac{1}{4} e^{-2 t} \sin 2 t$.
(c) Take the Laplace transform of

$$
p(D) x=2 \ddot{x}(t)+8 \dot{x}(t)+16 x(t)=\sin t
$$

with the initial conditions $x(0+)=1, \dot{x}(0+)=2$. This yields

$$
\begin{aligned}
& 2\left[s^{2} X(s)-s-2\right]+8[s X(s)-1]+16 X(s)=\frac{1}{s^{2}+1} \\
& \Rightarrow \quad X(s)=\frac{1}{2 s^{2}+8 s+16}\left(\frac{1}{s^{2}+1}+2 s+12\right)
\end{aligned}
$$

8. (a) The characteristic polynomial of A is

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & 12 \\
3 & 2-\lambda
\end{array}\right]=(2-\lambda)^{2}-36=(\lambda-8)(\lambda+4) .
$$

Therefore the eigenvalues are $\lambda=8,-4$.
(b) For $\lambda=8$, solve $(A-8 I) \mathbf{v}=\mathbf{0}$. Since $A-8 I=\left[\begin{array}{cc}-6 & 12 \\ 3 & -6\end{array}\right]$, a solution is $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. For $\lambda=-4$, solve $(A+4 I) \mathbf{v}=\mathbf{0}$. Since $A+4 I=\left[\begin{array}{cc}6 & 12 \\ 3 & 6\end{array}\right]$, a solution is $\mathbf{v}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$.
(c) The following is a fundamental matrix for $\dot{\mathbf{u}}=B \mathbf{u}$

$$
F(t)=\left[\begin{array}{cc}
e^{t} & -e^{2 t} \\
e^{t} & e^{2 t}
\end{array}\right]
$$

Then $e^{t B}$ can be computed as $F(t) F(0)^{-1}$.

$$
\begin{aligned}
F(0) & =\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right], \quad F(0)^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \\
e^{t B}=F(t) F(0)^{-1} & =\left[\begin{array}{cc}
e^{t} & -e^{2 t} \\
e^{t} & e^{2 t}
\end{array}\right] \cdot \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
e^{t}+e^{2 t} & e^{t}-e^{2 t} \\
e^{t}-e^{2 t} & e^{t}+e^{2 t}
\end{array}\right]
\end{aligned}
$$

(d) The general solution of $\dot{\mathbf{u}}=B \mathbf{u}$ is

$$
\mathbf{u}(t)=c_{1}\left[\begin{array}{c}
e^{t} \\
e^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-e^{2 t} \\
e^{2 t}
\end{array}\right]=F(t)\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

The given initial condition implies

$$
\begin{aligned}
{\left[\begin{array}{l}
2 \\
1
\end{array}\right] } & =F(0)\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
\Rightarrow \quad\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] & =F(0)^{-1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 / 2 \\
-1 / 2
\end{array}\right]
\end{aligned}
$$

Therefore the solution of the initial value problem is $\mathbf{u}(t)=\frac{1}{2}\left[\begin{array}{c}3 e^{t}+e^{2 t} \\ 3 e^{t}-e^{2 t}\end{array}\right]$.
9. (a) The phase portrait has the following features:

- All trajectories start at $(0,0)$ and run off to infinity.
- There are straight line trajectories along the lines $y= \pm x$.
- All other trajectories are tangent to $y=x$ at $(0,0)$.
- No two trajectories cross each other.
(b) $\operatorname{Tr} A=a+1, \quad \operatorname{det} A=a+4, \quad \Delta=(\operatorname{Tr} A)^{2}-4(\operatorname{det} A)=(a-5)(a+3)$
(i) $\operatorname{det} A<0 \Leftrightarrow a<-4$
(ii) not for any a
(iii) $\Delta>0, \operatorname{Tr} A<0$ and $\operatorname{det} A>0 \quad \Leftrightarrow \quad-4<a<-3$
(iv) $\Delta<0$ and $\operatorname{Tr} A<0 \Leftrightarrow-3<a<-1 ; \quad$ counterclockwise
(v) $\Delta<0$ and $\operatorname{Tr} A>0 \quad \Leftrightarrow \quad-1<a<5$
(vi) $\Delta=0$ and $\operatorname{Tr} A>0 \quad \Leftrightarrow \quad a=5$

10. (a) The equilibria are the solutions of

$$
\dot{x}=x^{2}-y^{2}=0, \quad \dot{y}=x^{2}+y^{2}-8=0 .
$$

This implies $\left(x^{2}, y^{2}\right)=(4,4)$, so that $(x, y)=(2,2),(2,-2),(-2,2),(-2,-2)$.
(b) The Jacobian is $J(x, y)=\left[\begin{array}{cc}2 x & -2 y \\ 2 x & 2 y\end{array}\right]$. In particular, $J(-2,-2)=\left[\begin{array}{cc}-4 & 4 \\ -4 & -4\end{array}\right]$.
(c) The linearization of the nonlinear system at $(-2,-2)$ is the linear system $\dot{\mathbf{u}}=J(-2,-2) \mathbf{u}$. A computation shows that the eigenvalues of $J(-2,-2)$ are $-4 \pm 4 i$. The first component of $\mathbf{u}(t)$ is of the form

$$
c_{1} e^{-4 t} \cos 4 t+c_{2} e^{-4 t} \sin 4 t=A e^{-4 t} \cos (4 t-\phi) .
$$

This means $x(t) \approx-2+A e^{-4 t} \cos (4 t-\phi)$ near $(-2,-2)$.
(d) Let $f(x)=2 x-3 x^{2}+x^{3}$. The phase line in problem 2(a) shows that $\dot{x}=f(x)$ has a stable equilibrium at $x=1$.
The linearization of the nonlinear equation at $x=1$ is the linear equation $\dot{u}=f^{\prime}(1) u=$ $-u$. Its solutions are $u(t)=A e^{-t}$. This means $x(t) \approx 1+A e^{-t}$ near $x=1$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

