Changing Variables in Multiple Integrals

3. Examples and comments; putting in limits.

If we write the change of variable formula as

$$
\begin{equation*}
\iint_{R} f(x, y) d x d y=\iint_{R} g(u, v)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \tag{18}
\end{equation*}
$$

where

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
x_{u} & x_{v} \tag{19}\\
y_{u} & y_{v}
\end{array}\right|, \quad g(u, v)=f(x(u, v), y(u, v))
$$

it looks as if the essential equations we need are the inverse equations:

$$
\begin{equation*}
x=x(u, v), \quad y=y(u, v) \tag{20}
\end{equation*}
$$

rather than the direct equations we are usually given:

$$
\begin{equation*}
u=u(x, y), \quad v=v(x, y) \tag{21}
\end{equation*}
$$

If it is awkward to get (20) by solving (21) simultaneously for x and y in terms of u and v, sometimes one can avoid having to do this by using the following relation (whose proof is an application of the chain rule, and left for the Exercises):

$$
\begin{equation*}
\frac{\partial(x, y)}{\partial(u, v)} \frac{\partial(u, v)}{\partial(x, y)}=1 \tag{22}
\end{equation*}
$$

The right-hand Jacobian is easy to calculate if you know $u(x, y)$ and $v(x, y)$; then the lefthand one - the one needed in (19) - will be its reciprocal. Unfortunately, it will be in terms of x and y instead of u and v, so (20) still ought to be needed, but sometimes one gets lucky. The next example illustrates.

Example 3. Evaluate $\iint_{R} \frac{y}{x} d x d y$, where R is the region pictured, having as boundaries the curves $x^{2}-y^{2}=1, \quad x^{2}-y^{2}=4, \quad y=0, \quad y=x / 2$.

Solution. Since the boundaries of the region are contour curves of $x^{2}-y^{2}$ and y / x, and the integrand is y / x, this suggests making the change of variable

$$
\begin{equation*}
u=x^{2}-y^{2}, \quad v=\frac{y}{x} \tag{23}
\end{equation*}
$$

We will try to get through without solving these backwards for x, y in terms of u, v. Since changing the integrand to the u, v variables will give no trouble, the question is whether we can get the Jacobian in terms of u and v easily. It all works out, using (22):

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{cc}
2 x & -2 y \\
-y / x^{2} & 1 / x
\end{array}\right|=2-2 y^{2} / x^{2}=2-2 v^{2} ; \quad \text { so } \quad \frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{2\left(1-v^{2}\right)}
$$

according to (22). We use now (18), put in the limits, and evaluate; note that the answer is positive, as it should be, since the integrand is positive.

$$
\begin{aligned}
\iint_{R} \frac{y}{x} d x d y & =\iint_{R} \frac{v}{2\left(1-v^{2}\right)} d u d v \\
& =\int_{0}^{1 / 2} \int_{1}^{4} \frac{v}{2\left(1-v^{2}\right)} d u d v \\
& \left.=-\frac{3}{4} \ln \left(1-v^{2}\right)\right]_{0}^{1 / 2}=-\frac{3}{4} \ln \frac{3}{4} .
\end{aligned}
$$

Putting in the limits

In the examples worked out so far, we had no trouble finding the limits of integration, since the region R was bounded by contour curves of u and v, which meant that the limits were constants.

If the region is not bounded by contour curves, maybe you should use a different change of variables, but if this isn't possible, you'll have to figure out the $u v$-equations of the boundary curves. The two examples below illustrate.

Example 4. Let $u=x+y, v=x-y ;$ change $\int_{0}^{1} \int_{0}^{x} d y d x$ to an iterated integral $d u d v$.

Solution. Using (19) and (22), we calculate $\frac{\partial(x, y)}{\partial(u . v)}=-1 / 2$, so the Jacobian factor in the area element will be $1 / 2$.

To put in the new limits, we sketch the region of integration, as shown at the right. The diagonal boundary is the contour curve $v=0$; the horizontal and vertical boundaries are not contour curves - what are their uv-equations? There are two ways to answer this; the first is more widely applicable, but requires a separate calculation for each boundary curve.

Method 1 Eliminate x and y from the three simultaneous equations $u=u(x, y), v=v(x, y)$, and the $x y$-equation of the boundary curve. For the x-axis and $x=1$, this gives

$$
\left\{\begin{array}{l}
u=x+y \\
v=x-y \\
y=0
\end{array} \Rightarrow u=v ; \quad\left\{\begin{array} { l }
{ u = x + y } \\
{ v = x - y } \\
{ x = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
u=1+y \\
v=1-y
\end{array} \Rightarrow u+v=2 .\right.\right.\right.
$$

Method 2 Solve for x and y in terms of u, v; then substitute $x=x(u, v), y=y(u, v)$ into the $x y$-equation of the curve.

Using this method, we get $x=\frac{1}{2}(u+v), y=\frac{1}{2}(u-v)$; substituting into the $x y$-equations:

$$
y=0 \Rightarrow \frac{1}{2}(u-v)=0 \Rightarrow u=v ; \quad x=1 \Rightarrow \frac{1}{2}(u+v)=1 \Rightarrow u+v=2 .
$$

To supply the limits for the integration order $\iint d u d v$, we

1. first hold v fixed, let u increase; this gives us the dashed lines shown;
2. integrate with respect to u from the u-value where a dashed line enters R (namely, $u=v$), to the u-value where it leaves (namely, $u=2-v$).
3. integrate with respect to v from the lowest v-values for which the dashed lines intersect the region R (namely, $v=0$), to the highest such v value (namely, $v=1$).

Therefore the integral is $\int_{0}^{1} \int_{v}^{2-v} \frac{1}{2} d u d v$.

(As a check, evaluate it, and confirm that its value is the area of R. Then try setting up the iterated integral in the order $d v d u$; you'll have to break it into two parts.)

Example 5. Using the change of coordinates $u=x^{2}-y^{2}, v=y / x$ of Example 3, supply limits and integrand for $\iint_{R} \frac{d x d y}{x^{2}}$, where R is the infinite region in the first quadrant under $y=1 / x$ and to the right of $x^{2}-y^{2}=1$.

Solution. We have to change the integrand, supply the Jacobian factor, and put in the right limits.

To change the integrand, we want to express x^{2} in terms of u and v; this suggests eliminating y from the u, v equations; we get

$$
u=x^{2}-y^{2}, \quad y=v x \quad \Rightarrow \quad u=x^{2}-v^{2} x^{2} \quad \Rightarrow \quad x^{2}=\frac{u}{1-v^{2}}
$$

From Example 3, we know that the Jacobian factor is $\frac{1}{2\left(1-v^{2}\right)}$; since in the region R we have by inspection $0 \leq v<1$, the Jacobian factor is always positive and we don't need the absolute value sign. So by (18) our integral becomes

$$
\iint_{R} \frac{d x d x y}{x^{2}}=\iint_{R} \frac{1-v^{2}}{2 u\left(1-v^{2}\right)} d u d v=\iint_{R} \frac{d u d v}{2 u}
$$

Finally, we have to put in the limits. The x-axis and the left-hand boundary curve $x^{2}-y^{2}=1$ are respectively the contour curves $v=0$ and $u=1$; our problem is the upper boundary curve $x y=1$. To change this to $u-v$ coordinates, we follow Method 1:

$$
\left\{\begin{array} { l }
{ u = x ^ { 2 } - y ^ { 2 } } \\
{ y = v x } \\
{ x y = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
u=x^{2}-1 / x^{2} \\
v=1 / x^{2}
\end{array} \Rightarrow u=\frac{1}{v}-v\right.\right.
$$

The form of this upper limit suggests that we should integrate first with respect to u. Therefore we hold v fixed, and let u increase; this gives the dashed ray shown in the picture; we integrate from where it enters R at $u=1$ to where it leaves, at $u=\frac{1}{v}-v$.

The rays we use are those intersecting R : they start from the lowest ray, corresponding to $v=0$, and go to the ray $v=a$, where a is the slope of OP. Thus our integral is

$$
\int_{0}^{a} \int_{1}^{1 / v-v} \frac{d u d v}{2 u}
$$

To complete the work, we should determine a explicitly. This can be done by solving $x y=1$ and $x^{2}-y^{2}=1$ simultaneously to find the coordinates of P. A more elegant approach is to add $y=a x$ (representing the line OP) to the list of equations, and solve all three simultaneously for the slope a. We substitute $y=a x$ into the other two equations, and get

$$
\left\{\begin{array}{l}
a x^{2}=1 \\
x^{2}\left(1-a^{2}\right)=1
\end{array} \quad \Rightarrow \quad a=1-a^{2} \quad \Rightarrow \quad a=\frac{-1+\sqrt{5}}{2}\right.
$$

by the quadratic formula.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

