Taylor's Series of $\frac{1}{1+x}$

Our next example is the Taylor's series for $\frac{1}{1+x}$; this series was first described by Isaac Newton. Remember the formula for the geometric series:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots \quad \text { if }|x|<1
$$

If we replace x by $-x$ we get:

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots \quad R=1
$$

You may recall that the graph of this function has an infinite discontinuity at $x=-1$; this gives us an idea of what R might be. If we try to replace x by -1 we get something of the form $\infty=\infty$; the radius of convergence of this series is 1 .

Instead of deriving this from the formula for the geometric series we could also have computed it using Taylor's formula. Try it!

Question: If you put in -1 for x the series diverges. If you put in 1 , it looks like it would converge.

Answer: The graph of $y=\frac{1}{1+x}$ looks smooth at $x=1$, but there is still a problem. If the series converges for $|x|<|a|$ and then diverges for $x=a$ the radius of convergence is a; that's it.

What happens if we plug $x=1$ into the series $1-x+x^{2}-x^{3}+\cdots$? Let's look at the partial sums $S_{N}=\sum_{n=0}^{N} a_{n} x^{n}$.

$$
\begin{aligned}
S_{0} & =1 \\
S_{1} & =0 \\
S_{2} & =1 \\
S_{3} & =0 \\
S_{4} & =1 \\
& \vdots
\end{aligned}
$$

Even though these don't go off to infinity, they still don't converge.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

