Taylor's Formula

Taylor's formula describes how to get power series representations of functions. The function e^{x} doesn't look like a polynomial; we have to figure out what the values of a_{i} have to be in order to describe e^{x} as a series.

Taylor's formula says that given any function f for which the $n^{t h}$ derivative $f^{(n)}(x)$ exists for x near 0,

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

We'll learn how to use it soon.
Why should this work? Suppose that:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots
$$

Then:

$$
\begin{gathered}
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots \quad \text { and } \\
f^{\prime \prime}(x)=2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2}+\cdots \quad \text { and } \\
f^{(3)}(x)=3 \cdot 2 a_{3}+4 \cdot 3 \cdot 2 a_{4} x+\cdots
\end{gathered}
$$

Evaluating each of these at 0 we see that: $f(0)=a_{0}, f^{\prime}(0)=a_{1}, f^{\prime \prime}(0)=2 a_{2}$ and $f^{(3)}(0)=3 \cdot 2 a_{3}$. Solving for a_{3} we get $a_{3}=\frac{f^{(3)}(0)}{3 \cdot 2 \cdot 1}$ and in general:

$$
a_{n}=\frac{f^{(n)}(0)}{n!}
$$

where:

$$
n!=n \cdot(n-1) \cdot(n-2) \cdots 1
$$

We define $0!=1$ because that makes our formulas work nicely.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

