Finding the Radius of Convergence

Use the ratio test to find the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n}
$$

Solution

As Christine explained in recitation, to find the radius of convergence of a series $\sum_{n=n_{0}}^{\infty} c_{n} x^{n}$ we apply the ratio test to find $L=\lim _{n \rightarrow \infty}\left|\frac{c_{n+1} x^{n+1}}{c_{n} x^{n}}\right|$. The value of x for which $L=1$ is the radius of convergence of the power series.

In this case,

$$
\begin{aligned}
\frac{c_{n+1} x^{n+1}}{c_{n} x^{n}} & =\frac{x^{n+1} /(n+1)}{x^{n} / n} \\
& =x \cdot \frac{n}{n+1}
\end{aligned}
$$

Taking the limit of this as n goes to infinity, we get:

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left|\frac{c_{n+1} x^{n+1}}{c_{n} x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|x \cdot \frac{n}{n+1}\right| \\
& =\lim _{n \rightarrow \infty}\left|x \cdot\left(1-\frac{1}{n+1}\right)\right| \\
L & =|x| .
\end{aligned}
$$

When $|x|<1, L<1$ and the ratio test tells us that the series will converge. For $|x|>1, L>1$ and the series diverges. The radius of convergence is 1 .

This gives us an idea of how close the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is to being convergent.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

