Power Series

Our last subject will be power series. We've seen one power series:

$$
1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x} \quad(|x|<1)
$$

This is our geometric series, with x in place of a. We'll now see why the sum should equal $\frac{1}{1-x}$.

Suppose that:

$$
1+x+x^{2}+x^{3}+\cdots=S
$$

for some number S. Multiply both sides of this equation by x :

$$
x+x^{2}+x^{3}+x^{4}+\cdots=S x
$$

Now subtract the two equations.

$$
\begin{gathered}
1+x+x^{2}+x^{3}+\cdots=S \\
x+x^{2}+x^{3}+\cdots=S x \\
\hline 1+0+0+0+\cdots
\end{gathered}
$$

Lots of terms cancel! Continuing, we get:

$$
\begin{aligned}
1 & =S-S x \\
1 & =S(1-x) \\
\frac{1}{1-x} & =S .
\end{aligned}
$$

There is a flaw in this reasoning - the argument only works if S exists. For example, if $x=1$ this technique tells us that $\infty-\infty=\infty-\infty$. This is not a useful result.

This line of reasoning leads to a correct answer exactly when the series converges; in other words, when $|x|<1$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

