Summing the Geometric Series

In lecture we saw a geometric argument that $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=2$. By answering the questions below, we complete an algebraic proof that this is true.

We start by proving by induction that:

$$
S_{N}=\sum_{n=0}^{N} \frac{1}{2^{n}}=\frac{2^{N+1}-1}{2^{N}}
$$

Finally we show that $\lim _{N \rightarrow \infty} S_{N}=2$.
a) (Base case) Prove that $S_{0}=\frac{2^{1}-1}{2^{0}}=1$.
b) (Inductive hypothesis and inductive step) Assume that:

$$
S_{N-1}=\frac{2^{(N-1)+1}-1}{2^{N-1}}=\frac{2^{N}-1}{2^{N-1}}
$$

Add $\frac{1}{2^{N}}$ to both sides to prove that:

$$
S_{N}=\frac{2^{N+1}-1}{2^{N}} .
$$

This completes the inductive proof.
c) Show that if $S_{N}=\frac{2^{N+1}-1}{2^{N}}$, then $\lim _{N \rightarrow \infty} S_{N}=2$.

Solution

Students often find proof by induction intimidating or confusing. However, once one masters the technique, one finds that the hardest part of a proof can be the high school level algebraic manipulation.
a) (Base case) Prove that $S_{0}=\frac{2^{1}-1}{2^{0}}=1$.

The hardest part of this step is understanding and using the summation notation.

$$
S_{0}=\sum_{n=0}^{0} \frac{1}{2^{n}}=\frac{1}{2^{0}}=1
$$

b) (Inductive hypothesis and inductive step) Assume that:

$$
S_{N-1}=\frac{2^{(N-1)+1}-1}{2^{N-1}}=\frac{2^{N}-1}{2^{N-1}}
$$

Add $\frac{1}{2^{N}}$ to both sides to prove that:

$$
S_{N}=\frac{2^{N+1}-1}{2^{N}}
$$

This completes the inductive proof.
This step requires careful manipulation of rational expressions, but is otherwise straightforward. We start with:

$$
S_{N-1}=\frac{2^{N}-1}{2^{N-1}}
$$

Applying the definition of S_{N} to the left hand side, we get:

$$
\sum_{n=0}^{N-1} \frac{1}{2^{n}}=\frac{2^{N}-1}{2^{N-1}}
$$

Next we add $\frac{1}{2^{N}}$ to both sides:

$$
\sum_{n=0}^{N-1} \frac{1}{2^{n}}+\frac{1}{2^{N}}=\frac{2^{N}-1}{2^{N-1}}+\frac{1}{2^{N}}
$$

Expand the summation and then add to complete the proof.

$$
\begin{aligned}
\sum_{n=0}^{N-1} \frac{1}{2^{n}}+\frac{1}{2^{N}} & =\frac{2^{N}-1}{2^{N-1}}+\frac{1}{2^{N}} \\
\frac{1}{2^{0}}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{N-1}}+\frac{1}{2^{N}} & =\frac{2\left(2^{N}-1\right)}{2 \cdot 2^{N-1}}+\frac{1}{2^{N}} \\
S_{N} & =\frac{2^{N+1}-2}{2^{N}}+\frac{1}{2^{N}} \quad\left(\text { dfn. of } S_{N}\right) \\
S_{N} & =\frac{2^{N+1}-1}{2^{N}}
\end{aligned}
$$

c) Show that if $S_{N}=\frac{2^{N+1}-1}{2^{N}}$, then $\lim _{N \rightarrow \infty} S_{N}=2$.

This is a straightforward evaluation of a limit.

$$
\begin{aligned}
\lim _{N \rightarrow \infty} S_{N} & =\lim _{N \rightarrow \infty} \frac{2^{N+1}-1}{2^{N}} \\
& =\lim _{N \rightarrow \infty}\left(\frac{2^{N+1}}{2^{N}}-\frac{1}{2^{N}}\right) \\
& =\lim _{N \rightarrow \infty}\left(2-\frac{1}{2^{N}}\right) \\
& =2-\lim _{N \rightarrow \infty} \frac{1}{2^{N}} \\
& =2
\end{aligned}
$$

To summarize, we first proved that $\frac{1}{2^{0}}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{N-1}}+\frac{1}{2^{N}}=\frac{2^{N+1}-1}{2^{N}}$. Then we showed that as the number of terms in this sum approaches infinity, the value of the sum approaches 2 .

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

