Summing the Geometric Series

In lecture we saw a geometric argument that $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 2$. By answering the questions below, we complete an algebraic proof that this is true.

We start by proving by induction that:

$$S_N = \sum_{n=0}^N \frac{1}{2^n} = \frac{2^{N+1} - 1}{2^N}.$$

Finally we show that $\lim_{N \to \infty} S_N = 2$.

- a) (Base case) Prove that $S_0 = \frac{2^1 1}{2^0} = 1$.
- b) (Inductive hypothesis and inductive step) Assume that:

$$S_{N-1} = \frac{2^{(N-1)+1} - 1}{2^{N-1}} = \frac{2^N - 1}{2^{N-1}}.$$

Add $\frac{1}{2^N}$ to both sides to prove that:

$$S_N = \frac{2^{N+1} - 1}{2^N}.$$

This completes the inductive proof.

c) Show that if
$$S_N = \frac{2^{N+1}-1}{2^N}$$
, then $\lim_{N \to \infty} S_N = 2$.

Solution

Students often find proof by induction intimidating or confusing. However, once one masters the technique, one finds that the hardest part of a proof can be the high school level algebraic manipulation.

a) (Base case) Prove that $S_0 = \frac{2^1 - 1}{2^0} = 1$.

The hardest part of this step is understanding and using the summation notation.

$$S_0 = \sum_{n=0}^{0} \frac{1}{2^n} = \frac{1}{2^0} = 1.$$

b) (Inductive hypothesis and inductive step) Assume that:

$$S_{N-1} = \frac{2^{(N-1)+1}-1}{2^{N-1}} = \frac{2^N-1}{2^{N-1}}.$$

Add $\frac{1}{2^N}$ to both sides to prove that:

$$S_N = \frac{2^{N+1} - 1}{2^N}.$$

This completes the inductive proof.

This step requires careful manipulation of rational expressions, but is otherwise straightforward. We start with:

$$S_{N-1} = \frac{2^N - 1}{2^{N-1}}.$$

Applying the definition of S_N to the left hand side, we get:

$$\sum_{n=0}^{N-1} \frac{1}{2^n} = \frac{2^N - 1}{2^{N-1}}$$

Next we add $\frac{1}{2^N}$ to both sides:

$$\sum_{n=0}^{N-1} \frac{1}{2^n} + \frac{1}{2^N} = \frac{2^N - 1}{2^{N-1}} + \frac{1}{2^N}$$

Expand the summation and then add to complete the proof.

$$\sum_{n=0}^{N-1} \frac{1}{2^n} + \frac{1}{2^N} = \frac{2^N - 1}{2^{N-1}} + \frac{1}{2^N}$$
$$\frac{1}{2^0} + \frac{1}{2^2} + \dots + \frac{1}{2^{N-1}} + \frac{1}{2^N} = \frac{2(2^N - 1)}{2 \cdot 2^{N-1}} + \frac{1}{2^N}$$
$$S_N = \frac{2^{N+1} - 2}{2^N} + \frac{1}{2^N} \quad (\text{dfn. of } S_N)$$
$$S_N = \frac{2^{N+1} - 1}{2^N}$$

c) Show that if $S_N = \frac{2^{N+1}-1}{2^N}$, then $\lim_{N \to \infty} S_N = 2$.

This is a straightforward evaluation of a limit.

$$\lim_{N \to \infty} S_N = \lim_{N \to \infty} \frac{2^{N+1} - 1}{2^N}$$
$$= \lim_{N \to \infty} \left(\frac{2^{N+1}}{2^N} - \frac{1}{2^N} \right)$$
$$= \lim_{N \to \infty} \left(2 - \frac{1}{2^N} \right)$$
$$= 2 - \lim_{N \to \infty} \frac{1}{2^N}$$
$$= 2$$

To summarize, we first proved that $\frac{1}{2^0} + \frac{1}{2^2} + \dots + \frac{1}{2^{N-1}} + \frac{1}{2^N} = \frac{2^{N+1} - 1}{2^N}$. Then we showed that as the number of terms in this sum approaches infinity, the value of the sum approaches 2. MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.