Summing the Geometric Series

In lecture we saw a geometric argument that $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=2$. By answering the questions below, we complete an algebraic proof that this is true. We start by proving by induction that:

$$
S_{N}=\sum_{n=0}^{N} \frac{1}{2^{n}}=\frac{2^{N+1}-1}{2^{N}}
$$

Finally we show that $\lim _{N \rightarrow \infty} S_{N}=2$.
a) (Base case) Prove that $S_{0}=\frac{2^{1}-1}{2^{0}}=1$.
b) (Inductive hypothesis and inductive step) Assume that:

$$
S_{N-1}=\frac{2^{(N-1)+1}-1}{2^{N-1}}=\frac{2^{N}-1}{2^{N-1}}
$$

Add $\frac{1}{2^{N}}$ to both sides to prove that:

$$
S_{N}=\frac{2^{N+1}-1}{2^{N}}
$$

This completes the inductive proof.
c) Show that if $S_{N}=\frac{2^{N+1}-1}{2^{N}}$, then $\lim _{N \rightarrow \infty} S_{N}=2$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

