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Summing the Geometric Series 
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In lecture we saw a geometric argument that 1 + + + + = 2. By an
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· · · 
swering the questions below, we complete an algebraic proof that this is true. 

We start by proving by induction that: 

N
1 2N+1 − 1 

SN = = . 
2n 2N 

n=0 

Finally we show that lim SN = 2. 
N→∞ 

21−1a) (Base case) Prove that S0 = 20 = 1. 

b) (Inductive hypothesis and inductive step) Assume that: 

SN−1 
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Add to both sides to prove that: 
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This completes the inductive proof.


c) Show that if SN =
2N+1 − 1

, then lim SN = 2. 
2N N→∞ 
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