Operations on Power Series Related to Taylor Series

In this problem, we perform elementary operations on Taylor series - term by term differentiation and integration - to obtain new examples of power series for which we know their sum. Suppose that a function f has a power series representation of the form:

$$
f(x)=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+\cdots=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}
$$

convergent on the interval $(c-R, c+R)$ for some R. The results we use in this example are:

- (Differentiation) Given f as above, $f^{\prime}(x)$ has a power series expansion obtained by by differentiating each term in the expansion of $f(x)$:

$$
f^{\prime}(x)=a_{1}+a_{2}(x-c)+2 a_{3}(x-c)+\cdots=\sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1}
$$

- (Integration) Given f as above, $\int f(x) d x$ has a power series expansion obtained by by integrating each term in the expansion of $f(x)$:

$$
\int f(x) d x=C+a_{0}(x-c)+\frac{a_{1}}{2}(x-c)^{2}+\frac{a_{2}}{3}(x-c)^{3}+\cdots=C+\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(x-c)^{n+1}
$$

for some constant C depending on the choice of antiderivative of f.

Questions:

1. Find a power series representation for the function $f(x)=\arctan (5 x)$. (Note: $\arctan x$ is the inverse function to $\tan x$.)
2. Use power series to approximate

$$
\int_{0}^{1} \sin \left(x^{2}\right) d x
$$

(Note: $\sin \left(x^{2}\right)$ is a function whose antiderivative is not an elementary function.)

Solution:

For question (1), we know that $\arctan x$ has a simple derivative: $\frac{1}{1+x^{2}}$, which then has a power series representation similar to that of $\frac{1}{1-x}$, where we subsitute $-x^{2}$ for x. Hence:

$$
\frac{d}{d x} \arctan (5 x)=\frac{5}{1+25 x^{2}}=5 \sum_{n=0}^{\infty}\left(-25 x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} 5^{2 n+1} x^{2 n},
$$

where the second equality above follows from the familiar geometric series representation for $\frac{1}{1-x}$. The last equality presents a cleaner final form after straightforward algebraic simplification. Thus
to obtain a power series expression for $\arctan x$ we may integrate this power series expression term by term. This gives:

$$
\arctan (5 x)=C+5 x-\frac{5^{3}}{3} x^{3}+\cdots=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{5^{2 n+1}}{2 n+1} x^{2 n+1}
$$

and we may solve for C by comparing both sides of the equality for any value of x. Choosing $x=0$, we see that $\arctan (x)=0$ and all non-constant terms of the power series are 0 , hence $C=0$ as well.

For question (2), we have seen that $\sin (x)$ has a power series expansion:

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} .
$$

Using a change of variable (replacing x by x^{2} in the power series above), we have the power series expansion

$$
\sin \left(x^{2}\right)=x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{(2 n+1)!} .
$$

Now taking the indefinite integral of both sides, we obtain a power series representation for the antiderivative of $\sin \left(x^{2}\right)$:

$$
\int \sin \left(x^{2}\right) d x=\frac{1}{3} x^{3}-\frac{1}{7} \frac{x^{7}}{3!}+\frac{1}{11} \frac{x^{10}}{5!}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4 n+3} \frac{x^{4 n+3}}{(2 n+1)!} .
$$

The power series expression is valid for any real number x since the power series for $\sin (x)$, and hence $\sin \left(x^{2}\right)$ converged for all x.

To approximate the definite integral, we may use as many terms of the series as we like. For example, using only the first non-zero term would give:

$$
\left.\int_{0}^{1} \sin \left(x^{2}\right) d x \approx \frac{1}{3} x^{3}\right|_{x=0} ^{x=1}=\frac{1}{3}
$$

The first two non-zero terms gives:

$$
\left.\int_{1}^{2} \sin \left(x^{2}\right) d x \approx\left(\frac{1}{3} x^{3}-\frac{1}{7} \frac{x^{7}}{3!}\right)\right|_{x=0} ^{x=1}=\left(\frac{1}{3}-\frac{1}{42}\right)=\frac{13}{42} .
$$

Using a numerical integration on a computer-algebra system, we find that the answer is approximately $.31026 \ldots$ while $13 / 42=.309524$. We can improve this estimate by using more terms in the power series.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

