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Operations on Power Series Related to Taylor Series


In this problem, we perform elementary operations on Taylor series – term by term differen
tiation and integration – to obtain new examples of power series for which we know their sum. 
Suppose that a function f has a power series representation of the form: 

∞
f(x) = a0 + a1(x − c) + a2(x − c)2 + = an(x − c)n · · · 

n=0 

convergent on the interval (c − R, c + R) for some R. The results we use in this example are: 

•	 (Differentiation) Given f as above, f �(x) has a power series expansion obtained by by differ
entiating each term in the expansion of f(x): 

∞
f �(x) = a1 + a2(x − c) + 2a3(x − c) + = nan(x − c)n−1 · · · 

n=1 

•	 (Integration) Given f as above, f(x) dx has a power series expansion obtained by by inte
grating each term in the expansion of f(x): 

f(x) dx = C + a0(x − c) + 
a1 (x − c)2 + 

a2 (x − c)3 + = C + 
∞ an (x − c)n+1 

2 3 
· · · 

n + 1
n=0 

for some constant C depending on the choice of antiderivative of f . 

Questions: 

1. Find a power series representation for the function f(x) = arctan(5x). (Note: arctan x is the 
inverse function to tan x.) 

2. Use power series to approximate � 1 
sin(x 2) dx 

0 

(Note: sin(x2) is a function whose antiderivative is not an elementary function.) 

Solution: 

1
For question (1), we know that arctan x has a simple derivative: , which then has a power 

1 + x2 

1
series representation similar to that of 

1 − x 
, where we subsitute −x2 for x. Hence: 

d	 5 � �∞ ∞
arctan(5x) = = 5 (−25x 2)n = (−1)n52n+1 x 2n ,

dx 1 + 25x2 
n=0 n=0 

where the second equality above follows from the familiar geometric series representation for .
1 − x 

The last equality presents a cleaner final form after straightforward algebraic simplification. Thus 

1 



� 

� 

� � 

���� 
� � ����� 

� � 

to obtain a power series expression for arctan x we may integrate this power series expression term 
by term. This gives: 

∞
= C + (−1)n53 52n+1 

x
3 + 2n+1arctan(5x) = C + 5x −
 x ,
· · ·

3
 2n + 1


n=0 

and we may solve for C by comparing both sides of the equality for any value of x. Choosing x = 0, 
we see that arctan(x) = 0 and all non-constant terms of the power series are 0, hence C = 0 as 
well. 

For question (2), we have seen that sin(x) has a power series expansion: 

∞� 

=0n

(−1)n 
3 5 2n+1x
 x
 x


sin(x) = x −
 + 
5! 
− · · · = .


3!
 (2n + 1)!


Using a change of variable (replacing x by x2 in the power series above), we have the power series 
expansion 

∞

n=0 

(−1)n 
6 10 4n+2x
 x
 x


sin(x 2) = x 2 − 
3!

+ 
5! 
− · · · =
 .


(2n + 1)!


Now taking the indefinite integral of both sides, we obtain a power series representation for the 
antiderivative of sin(x2): 

∞

n=0 

(−1)n 

4n + 3 

7 1 10 4n+31 1
x
 x
 x

sin(x
2) dx = 3 − 

7 3! 
+

11 5! 
− · · · =
x
 .


3
 (2n + 1)!


The power series expression is valid for any real number x since the power series for sin(x), and 
hence sin(x2) converged for all x. 

To approximate the definite integral, we may use as many terms of the series as we like. For 
example, using only the first non-zero term would give: � 1 x=11
 1
2) dx ≈ 3sin(x
 =
x
 .


3
 3
0 x=0 

The first two non-zero terms gives:


� 2 x=1
1 1 x7 1 1
 13


sin(x 2) dx ≈ 3 = =
−

7 3!
 3 

−
x
 .

3
 42 42
1 x=0 

Using a numerical integration on a computer-algebra system, we find that the answer is approxi
mately .31026... while 13/42 = .309524. We can improve this estimate by using more terms in the 
power series. 
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