
18.01 Final Answers

1. (1a) By the product rule,

(x3ex)′ = 3x2ex + x3ex = ex(3x2 + x3).

(1b) If f(x) = sin(2x), then

f (7)(x) = −128 cos(2x)

since:

f (1)(x) = 2 cos(2x)

f (2)(x) = −4 sin(2x)

f (3)(x) = −8 cos(2x)

f (4)(x) = 16 sin(2x)

f (5)(x) = 32 cos(2x)

f (6)(x) = −64 sin(2x)

f (7)(x) = −128 cos(2x)

2. (2a) The line tangent to y = 3x2 − 5x + 2 at x = 2 has a slope equal
to that of the curve at x = 2 and passes through the point (2, 4).

The slope of the line at x = 2 is y′(x = 2) = 6x− 5 = 6(2)− 5 = 7 = m.
The y-intercept of the line, b, is found by using the slope and the known

4
point:

− b
= 7

2− 0
⇒ b = −10.

The equation of the line is therefore

y = mx+ b = 7x− 10.

(2b) If the curve had a horizontal tangent, then at some point the first
derivative of y with respect to x would be equal to zero.

The derivative of the equation xy3 + x3y = 4 is
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y3 + x(3y2)y′ + 3x2y + y′x3 = 0⇒ y′(x3y2 + x3) = −y3 − 3x2y.

3

If y′ were to 0, then
−y

equal
− 3x2y

= 0
x3y2 + x3

⇒ −y3 − 3x2y = 0. This

equation is valid when both x and y are zero or when y3 = −3x2y for nonzero
x and y.

The first case is not valid, because we are given that xy3 +x3y = 4, which
would not be possible if x and y were both zero.

The second case is also impossible, because y3 = −3x2y ⇒ y2 = −3x2 (we
can divide by y because in this case it must be nonzero) and it is not possible
for the ratio of two squares (necessarily positive numbers) to be equal to a
negative number.

Therefore y′ can never be zero and so the curve defined by xy3 + x3y = 4
has no horizontal tangents.

3. (3a)

d

dx

(
x f(t)− f(x)

= lim
x+ 1

)
t→x t x

t

−

= lim t+1
− x

x+1

t→x t− x
t(x+ 1)− x(t+ 1)

= lim
t→x (t− x)(t+ 1)(x+ 1)

tx+ t
= lim

− tx− x
t→x (t− x)(t+ 1)(x+ 1)

t x
= lim

−
t→x (t− x)(t+ 1)(x+ 1)

1
= lim

t→x (t+ 1)(x+ 1)
1

=
(x+ 1)2

(3b)
tan−1(x)

lim
− π/3

x
√
→ 3 x

√
− 3

When x
√

→ 3, the numerator becomes π/3 − π/3 = 0 and as the de-
nominator also goes to zero, we can use l’Hospital’s rule to compute the
limit:
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(tan−1(x)− π/3)′ 1/(1 + x2)
lim
x
√
→ 3 (x

√ = lim
− 3)′ x

√
→ 3 1

1
= lim

x
√

→ 3 1 + x2

1
=

1 + (
√

3)2

1
=

4

x
4. As shown in the graph below, y = has the following properties:

x2 + 1

• Local maximum (y′ = 0, y′′ < 0) at x=1

• Local minimum (y′ = 0, y′′ > 0) at x=-1

• The function is increasing (y′ > 0) when |x| < 1

• The function is decreasing (y′ < 0) when |x| > 1

The inflection points (y′′ = 0) are x = 0,
√

• ± 3

• The graph is symmetric about the origin

• The horizontal asymptote

(
x

lim

)
is the line y = 0

2x→∞ x + 1

• There is no vertical asymptote

5. The values x and y are defined as in the figure below:
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The area of printed type = 50 in2, so xy = 50 and the total area of the
poster is (x + 4)(y + 8). To minimize the amount of paper used, we need to
minimize the total area of the poster.

(x+ 4)(y + 8) = xy + 4y + 8x+ 32 = 82 + 4y + 8x

since we know that xy = 50.
We can also substitute y = 50/x, so that we have an area equal to:

4(50)
82 + + 8x.

x

To find the minimum of this equation we set the first derivative with
respect to x equal to zero:

200− + 8 = 0 x2 = 25 x = 5,
x2

⇒ ⇒

taking only the positive root because x represents a physical quantity.
We can check that x = 5 corresponds to a minimum of the area by taking

the second derivative of −200
2 +8, which is 400

3 . Since this is positive at x = 5,
x x

the point does indeed correspond to a minimum.
If x = 5 then xy = 50⇒ y = 10. Thus the dimensions of the poster which

minimize the amount of paper used are a = x+ 4 = 9 in and b = y + 8 = 18
in.

6. Let y be the total distance from the plane to the car, and let x be
the horizontal distance between the plane and the car. The question asks for
dc/dt, the car’s speed.
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From the Pythagorean theorem, y = x2 + 1, because the plane is a
distance one mile above the road. By definition, we also know that dc/dt =
dx/dt− 120, as the plane has speed 120 mph with respect to the ground. In√
addition, since y = 3/2 at t = 0, we know that x =

√
y2 − 1 = 5 at t = 0.

2

We can then determine that:

dy 1
= (x2 + 1)−1/2

dx
(2x) = 136

dt 2

(
dt

)
−

and we can substitute x =
√

5/2 to obtain:

dx
=

dt
−136

(
3√
5

)
408≈ −
2.2

From this we can calculate:

408
dc/dt =

2.2
− 120 ≈ 65.5 mph

√
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7. (7a) ∑n √ 2i
(

2
) ∫ 2

lim 1 + =
√

1 + x dx
n→∞ n n 0i=1

2
2

= (1 + x)3/2
3

∣
0

2 2
= (3)3/2

∣
3

−
3

∣∣

= 2
√ 2

3−
3

(7b) ∫ 2+h
1 2+h dx

lim sin(x2
sin(x2)

)dx = lim 2

h→0 h h→02

∫
h

By l’Hospital’s rule, this is equal to

lim sin((2 + h)2) = sin(4)
h→0

8. (8a)∫ π/4

tanx sec2 xdx =
0

∫ π/4( sinx
)

1
∫ π/4 sinx

dx = dx
2

0 cosx cos x 0 cos3 x

du
Let u = cosx. Then =

dx
− sin(x). Substituting into the integral,

∫ π/4 ∫ x=π/4 π/4
sinx du 1

dx = − = cos(x)−2
1 1

= cos(π/4)−2 1 = .
3

0 cos x 3
x=0 u 2

∣∣∣ (∣
0 2

−
)

2

(8b) Using integration by parts,

∫ 2 2
1 2 1

x lnxdx = x2 lnx

∣
x dx

1 2 1

−
1 2

2
1

∣ ∫
(4) ln(2)

∣
2

∣
1 1

= − ln(1)
2

− x2
4

1 3

∣
1

= 2 ln(2)

∣
− ln(1)

2
−

4

∣∣

9. Using the inverse trigonometric substitutions x = 3 sin θ, dx = 3 cos θdθ,
the integral becomes
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∫
9 sin2√ θ(3 cos θdθ)

= 9

∫
sin2 θdθ.

9− 9 sin2 θ

We can then use the double angle formula sin2 θ = 1(1−cos 2θ) to obtain
2

9

2

∫
(1− cos 2θ) dθ.

Evaluating the integral, we have

9 9
θ − sin 2θ + C,

2 4

where C is a constant of integration. Substituting x back in,∫
x2dx 9√ = sin−1 9
9 x2 2

(x
3

) 1− x
√

2
− x2 + C

−
*for reference, this is worked out in lec 25, fall 2005, p.4

10. In general, the volume of an area revolved around the y-axis can be
found by

V = 2π

∫ b

xf(x)dx
a

In this case, we are revolving the region as shown in the figure below:
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Applying the formula to the region between
√
a2 x2,

√
− − a2 − x2, x = a,

and x = a/2, we obtain:

a

V = 2π

∫
x2
√
a2

a/2

− x2dx

Substituting u = x2 and du/dx = 2x :

V = 2π

∫ x=a √ x=a
2

a2 )
x

− udu = 2π
=a/2

(
− (a2 u

3
− 3/2

) ∣∣
Replacing

∣∣
x=a/2

u with x2 :

a
4π

V = −
(
(a2 − x2)3/2

3

4π

∣∣
a/2

= − 0 (

) ∣
− a2 − (a/

∣
2)2)3/2

3
2

4π a2
3/

3
=

( )
3

(
4√

3πa3

)
=

2

x

11. Let y(x) = e . Using the two-trapezoid method, the picture should
x

be approximately as follows:
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The areas of the regions are then:
Region I: (3− 1)y(1) = 2y(1) = 2(2.7) = 5.4
Region II: (5− 3)y(3) = 2y(3) = 2(6.7) = 13.4
Region III: (.5)(3− 1)(y(3)− y(1)) = y(3)− y(1) = 6.7− 2.7 = 4
Region IV:(.5)(5− 3)(y(5)− y(3)) = y(5)− y(3) = 29.7− 6.7 = 23
And the total area is then 45.8 units2.

12. (12a) It is given that the rate of radioactive decay of a mass of
Radium-226, dm/dt, is proportional to the amount m of Radium present at
time t. We can then write

dm
= Am,

dt
where A is a constant. Re-writing and integrating the equation,

∫
dm

= Adt
m

ln(m) =

∫
At+ C ′

m = eAt+C
′
= eAteC

′

m = CeAt
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where C is a constant. We can find A and C by using the information
given in the problem. First, we know that there are 100 mg of Radium
present at t = 0, so that

m(t = 0) = C = 100 mg.

We also know that it takes 1600 years form to decrease by half. Therefore:

(50/100) = .5 = e1600A

ln(.5) = 1600A

A = ln(.5)/1600.

Finally,

m = CeAt

= 100e(ln(.5)/1600)t

= 100(eln(.5))t/1600

= 100(.5)t/1600,

where t is in years and m(t) is in mg.

(12b) When t = 1000 years, and using the approximation given in the
question,

m = 100(.5)1000/1600

= 100(2)−10/16

≈ 100(.65)

= 65mg.

13. The formula for arc length S of a curve defined by parametric equa-
tions x(t) and y(t) is:

S =

∫ b√
x′(t)2 + y′(t)2dt.

a

In this problem, x(t) is given as∫ t

cos(πu2/2)du
0
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and
t

y(t) = sin(πu2/2)du.
0

Their derivatives are

∫

x′(t) = cos

(
πt2
)

y′(t) = sin

( 2

πt2

2

)
Substituting x′(t), y′(t), and the appropriate limits into the formula for

arc length results in:

S =

∫ t0√
cos2(πt2/2) + sin2(πt2/2)dt

0

=

∫ t0

dt
0
t0

= t
∣∣∣∣
0

= t0

14. (14a) The Taylor series of a function f(x) centered at x = a is

f ′(a)(x− a) f (2)(a)(x− a)2 f (3)(a)(x− a)3 f (4)(a)(x )4
f(a)+ + + +

− a
+. . .

1! 2! 3! 4!

The Taylor series of ln(1 + x) centered at x = a is then

(1 + a)−1(x− a) −(1 + a)−2(x− a)2 2(1 + a)−3(x a)3 (2)(3)(1 + a)−4(x a)4
ln(1+a)+ + +

−
+
− −

+. . .
1! 2! 3! 4!

And the Taylor series of ln(1 + x) centered at a = 0 is therefore

x x2 2x3 (2)(3)x4 x x2 x3 x4
ln(1) + +

−
+ +

−
+ . . . = 0 + +

−
+ +

−
+ . . .

1! 2! 3! 4! 1 2 3 4∑∞
= (

n=1

−1)n+1x
n

n

(14b) Using the ratio test,
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∣ ∣∣∣ cn ∣ ∣∣ ∣∣ (−1)n+1n|x| <
∣∣ ∣ = ∣ ∣∣∣∣ =
∣∣ n∣ .

cn+1 (−1)n+2n+ 1 n+ 1

∣
Because n is the index of summation (an increasing

∣∣
integer), n + 1 is

always greater than n and therefore

∣

|x| <
∣

n

n+ 1

∣
< 1

Thus |x| < 1 and the radius of con

∣∣ ∣∣
vergence

∣∣
is −1 < x < 1.

(14c) ln(3/2) = ln(1 + .5) can be approximated by the first two non-zero
terms of the Taylor series found in (a):

x x2
ln(1 + x) ≈ +

−
1 2

.25
= .5−

2
3

=
8

(14d) The upper bound of the error in (c)’s approximation is found using
Taylor’s inequality for an approximation of n terms:

xn+1

|Rn(x) Mn
| || ≤ ,

(n+ 1)!

where x = 1/2 and n = 2. In addition,

2
Mn ≥ |f (n+1)(x)| ⇒M2 ≥

(1 + x)3

for all |x| ≤ 1/2; the maximum of M2 in this range is for x = −1/2, which
gives M2 = 16. Putting these numbers into the above formula,

(.5)3 1|Rn(.5)| ≤ 16 =
3! 3

15. We can prove the inequality by showing that the derivatives of the
terms satisfy the inequality for x > 0 and then by working backwards from
there:

(
x

)
1 2x2 1 1

d = − , d(tan− (x)) = , d(x) = 1
1 + x2 1 + x2 (1 + x2)2 1 + x2
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1 2x2 1⇒
1 + x2

− < < 1 for all x > 0
(1 + x2)2∫ ( ) ∫1 + x2

t 1 2x2 t 1 t

dx < dx < 1dx for all x > 0
2 2 2 2

0 1 + x
−

(1 + x ) 0 1 + x

∫
0

t
< tan−1(t) < t for all t > 0

1 + t2
x

< tan−1(x) < x for all x > 0
1 + x2
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