18.01 Final Answers

1. (1a) By the product rule,

$$
\left(x^{3} e^{x}\right)^{\prime}=3 x^{2} e^{x}+x^{3} e^{x}=e^{x}\left(3 x^{2}+x^{3}\right)
$$

(1b) If $f(x)=\sin (2 x)$, then

$$
f^{(7)}(x)=-128 \cos (2 x)
$$

since:

$$
\begin{aligned}
& f^{(1)}(x)=2 \cos (2 x) \\
& f^{(2)}(x)=-4 \sin (2 x) \\
& f^{(3)}(x)=-8 \cos (2 x) \\
& f^{(4)}(x)=16 \sin (2 x) \\
& f^{(5)}(x)=32 \cos (2 x) \\
& f^{(6)}(x)=-64 \sin (2 x) \\
& f^{(7)}(x)=-128 \cos (2 x)
\end{aligned}
$$

2. (2a) The line tangent to $y=3 x^{2}-5 x+2$ at $x=2$ has a slope equal to that of the curve at $x=2$ and passes through the point $(2,4)$.

The slope of the line at $x=2$ is $y^{\prime}(x=2)=6 x-5=6(2)-5=7=m$. The y-intercept of the line, b, is found by using the slope and the known point: $\frac{4-b}{2-0}=7 \Rightarrow b=-10$.

The equation of the line is therefore

$$
y=m x+b=7 x-10 .
$$

(2b) If the curve had a horizontal tangent, then at some point the first derivative of y with respect to x would be equal to zero.

The derivative of the equation $x y^{3}+x^{3} y=4$ is

$$
y^{3}+x\left(3 y^{2}\right) y^{\prime}+3 x^{2} y+y^{\prime} x^{3}=0 \Rightarrow y^{\prime}\left(x 3 y^{2}+x^{3}\right)=-y^{3}-3 x^{2} y .
$$

If y^{\prime} were equal to 0 , then $\frac{-y^{3}-3 x^{2} y}{x 3 y^{2}+x^{3}}=0 \Rightarrow-y^{3}-3 x^{2} y=0$. This equation is valid when both x and y are zero or when $y^{3}=-3 x^{2} y$ for nonzero x and y.

The first case is not valid, because we are given that $x y^{3}+x^{3} y=4$, which would not be possible if x and y were both zero.

The second case is also impossible, because $y^{3}=-3 x^{2} y \Rightarrow y^{2}=-3 x^{2}$ (we can divide by y because in this case it must be nonzero) and it is not possible for the ratio of two squares (necessarily positive numbers) to be equal to a negative number.

Therefore y^{\prime} can never be zero and so the curve defined by $x y^{3}+x^{3} y=4$ has no horizontal tangents.
3. (3a)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{x}{x+1}\right) & =\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} \\
& =\lim _{t \rightarrow x} \frac{\frac{t}{t+1}-\frac{x}{x+1}}{t-x} \\
& =\lim _{t \rightarrow x} \frac{t(x+1)-x(t+1)}{(t-x)(t+1)(x+1)} \\
& =\lim _{t \rightarrow x} \frac{t x+t-t x-x}{(t-x)(t+1)(x+1)} \\
& =\lim _{t \rightarrow x} \frac{t-x}{(t-x)(t+1)(x+1)} \\
& =\lim _{t \rightarrow x} \frac{1}{(t+1)(x+1)} \\
& =\frac{1}{(x+1)^{2}}
\end{aligned}
$$

$$
\begin{equation*}
\lim _{x \rightarrow \sqrt{3}} \frac{\tan ^{-1}(x)-\pi / 3}{x-\sqrt{3}} \tag{3b}
\end{equation*}
$$

When $x \rightarrow \sqrt{3}$, the numerator becomes $\pi / 3-\pi / 3=0$ and as the denominator also goes to zero, we can use l'Hospital's rule to compute the limit:

$$
\begin{aligned}
\lim _{x \rightarrow \sqrt{3}} \frac{\left(\tan ^{-1}(x)-\pi / 3\right)^{\prime}}{(x-\sqrt{3})^{\prime}} & =\lim _{x \rightarrow \sqrt{3}} \frac{1 /\left(1+x^{2}\right)}{1} \\
& =\lim _{x \rightarrow \sqrt{3}} \frac{1}{1+x^{2}} \\
& =\frac{1}{1+(\sqrt{3})^{2}} \\
& =\frac{1}{4}
\end{aligned}
$$

4. As shown in the graph below, $y=\frac{x}{x^{2}+1}$ has the following properties:

- Local maximum $\left(y^{\prime}=0, y^{\prime \prime}<0\right)$ at $\mathrm{x}=1$
- Local minimum $\left(y^{\prime}=0, y^{\prime \prime}>0\right)$ at $\mathrm{x}=-1$
- The function is increasing $\left(y^{\prime}>0\right)$ when $|x|<1$
- The function is decreasing $\left(y^{\prime}<0\right)$ when $|x|>1$
- The inflection points $\left(y^{\prime \prime}=0\right)$ are $x=0, \pm \sqrt{3}$
- The graph is symmetric about the origin
- The horizontal asymptote $\left(\lim _{x \rightarrow \infty} \frac{x}{x^{2}+1}\right)$ is the line $y=0$
- There is no vertical asymptote

5. The values x and y are defined as in the figure below:

The area of printed type $=50 \mathrm{in}^{2}$, so $x y=50$ and the total area of the poster is $(x+4)(y+8)$. To minimize the amount of paper used, we need to minimize the total area of the poster.

$$
(x+4)(y+8)=x y+4 y+8 x+32=82+4 y+8 x
$$

since we know that $x y=50$.
We can also substitute $y=50 / x$, so that we have an area equal to:

$$
82+\frac{4(50)}{x}+8 x .
$$

To find the minimum of this equation we set the first derivative with respect to x equal to zero:

$$
-\frac{200}{x^{2}}+8=0 \Rightarrow x^{2}=25 \Rightarrow x=5
$$

taking only the positive root because x represents a physical quantity.
We can check that $x=5$ corresponds to a minimum of the area by taking the second derivative of $-\frac{200}{x^{2}}+8$, which is $\frac{400}{x^{3}}$. Since this is positive at $x=5$, the point does indeed correspond to a minimum.

If $x=5$ then $x y=50 \Rightarrow y=10$. Thus the dimensions of the poster which minimize the amount of paper used are $a=x+4=9$ in and $b=y+8=18$ in.
6. Let y be the total distance from the plane to the car, and let x be the horizontal distance between the plane and the car. The question asks for $d c / d t$, the car's speed.

From the Pythagorean theorem, $y=\sqrt{x^{2}+1}$, because the plane is a distance one mile above the road. By definition, we also know that $d c / d t=$ $d x / d t-120$, as the plane has speed 120 mph with respect to the ground. In addition, since $y=3 / 2$ at $t=0$, we know that $x=\sqrt{y^{2}-1}=\frac{\sqrt{5}}{2}$ at $t=0$.

We can then determine that:

$$
\frac{d y}{d t}=\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}(2 x)\left(\frac{d x}{d t}\right)=-136
$$

and we can substitute $x=\sqrt{5} / 2$ to obtain:

$$
\frac{d x}{d t}=-136\left(\frac{3}{\sqrt{5}}\right) \approx-\frac{408}{2.2}
$$

From this we can calculate:

$$
d c / d t=\frac{408}{2.2}-120 \approx 65.5 \mathrm{mph}
$$

7. (7a)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\frac{2 i}{n}}\left(\frac{2}{n}\right) & =\int_{0}^{2} \sqrt{1+x} d x \\
& =\left.\frac{2}{3}(1+x)^{3 / 2}\right|_{0} ^{2} \\
& =\frac{2}{3}(3)^{3 / 2}-\frac{2}{3} \\
& =2 \sqrt{3}-\frac{2}{3}
\end{aligned}
$$

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{1}{h} \int_{2}^{2+h} \sin \left(x^{2}\right) d x=\lim _{h \rightarrow 0} \frac{\int_{2}^{2+h} \sin \left(x^{2}\right) d x}{h} \tag{7b}
\end{equation*}
$$

By l'Hospital's rule, this is equal to

$$
\lim _{h \rightarrow 0} \sin \left((2+h)^{2}\right)=\sin (4)
$$

8. (8a)

$$
\int_{0}^{\pi / 4} \tan x \sec ^{2} x d x=\int_{0}^{\pi / 4}\left(\frac{\sin x}{\cos x}\right) \frac{1}{\cos ^{2} x} d x=\int_{0}^{\pi / 4} \frac{\sin x}{\cos ^{3} x} d x
$$

Let $u=\cos x$. Then $\frac{d u}{d x}=-\sin (x)$. Substituting into the integral,

$$
\int_{0}^{\pi / 4} \frac{\sin x}{\cos ^{3} x} d x=-\int_{x=0}^{x=\pi / 4} \frac{d u}{u^{3}}=\left.\frac{1}{2} \cos (x)^{-2}\right|_{0} ^{\pi / 4}=\frac{1}{2}\left(\cos (\pi / 4)^{-2}-1\right)=\frac{1}{2}
$$

(8b) Using integration by parts,

$$
\begin{aligned}
\int_{1}^{2} x \ln x d x & =\left.\frac{1}{2} x^{2} \ln x\right|_{1} ^{2}-\int_{1}^{2} \frac{1}{2} x d x \\
& =\frac{1}{2}(4) \ln (2)-\frac{1}{2} \ln (1)-\left.\frac{1}{4} x^{2}\right|_{1} ^{2} \\
& =2 \ln (2)-\frac{1}{2} \ln (1)-\frac{3}{4}
\end{aligned}
$$

9. Using the inverse trigonometric substitutions $x=3 \sin \theta, d x=3 \cos \theta d \theta$, the integral becomes

$$
\int \frac{9 \sin ^{2} \theta(3 \cos \theta d \theta)}{\sqrt{9-9 \sin ^{2} \theta}}=9 \int \sin ^{2} \theta d \theta
$$

We can then use the double angle formula $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$ to obtain

$$
\frac{9}{2} \int(1-\cos 2 \theta) d \theta
$$

Evaluating the integral, we have

$$
\frac{9}{2} \theta-\frac{9}{4} \sin 2 \theta+C
$$

where C is a constant of integration. Substituting x back in,

$$
\int \frac{x^{2} d x}{\sqrt{9-x^{2}}}=\frac{9}{2} \sin ^{-1}\left(\frac{x}{3}\right)-\frac{1}{2} x \sqrt{9-x^{2}}+C
$$

*for reference, this is worked out in lec 25 , fall 2005, p. 4
10. In general, the volume of an area revolved around the y-axis can be found by

$$
V=2 \pi \int_{a}^{b} x f(x) d x
$$

In this case, we are revolving the region as shown in the figure below:

Applying the formula to the region between $\sqrt{a^{2}-x^{2}},-\sqrt{a^{2}-x^{2}}, x=a$, and $x=a / 2$, we obtain:

$$
V=2 \pi \int_{a / 2}^{a} x 2 \sqrt{a^{2}-x^{2}} d x
$$

Substituting $u=x^{2}$ and $d u / d x=2 x$:

$$
V=2 \pi \int_{x=a / 2}^{x=a} \sqrt{a^{2}-u} d u=\left.2 \pi\left(-\frac{2}{3}\left(a^{2}-u\right)^{3 / 2}\right)\right|_{x=a / 2} ^{x=a}
$$

Replacing u with x^{2} :

$$
\begin{aligned}
V & =-\left.\frac{4 \pi}{3}\left(\left(a^{2}-x^{2}\right)^{3 / 2}\right)\right|_{a / 2} ^{a} \\
& =-\frac{4 \pi}{3}\left(0-\left(a^{2}-(a / 2)^{2}\right)^{3 / 2}\right) \\
& =\frac{4 \pi}{3}\left(\frac{3 a^{2}}{4}\right)^{3 / 2} \\
& =\frac{\sqrt{3} \pi a^{3}}{2}
\end{aligned}
$$

11. Let $y(x)=\frac{e^{x}}{x}$. Using the two-trapezoid method, the picture should be approximately as follows:

The areas of the regions are then:
Region I: $(3-1) y(1)=2 y(1)=2(2.7)=5.4$
Region II: $(5-3) y(3)=2 y(3)=2(6.7)=13.4$
Region III: $(.5)(3-1)(y(3)-y(1))=y(3)-y(1)=6.7-2.7=4$
Region IV: $(.5)(5-3)(y(5)-y(3))=y(5)-y(3)=29.7-6.7=23$
And the total area is then 45.8 units 2.
12. (12a) It is given that the rate of radioactive decay of a mass of Radium-226, $d m / d t$, is proportional to the amount m of Radium present at time t. We can then write

$$
\frac{d m}{d t}=A m
$$

where A is a constant. Re-writing and integrating the equation,

$$
\begin{aligned}
\int \frac{d m}{m} & =\int A d t \\
\ln (m) & =A t+C^{\prime} \\
m & =e^{A t+C^{\prime}}=e^{A t} e^{C^{\prime}} \\
m & =C e^{A t}
\end{aligned}
$$

where C is a constant. We can find A and C by using the information given in the problem. First, we know that there are 100 mg of Radium present at $t=0$, so that

$$
m(t=0)=C=100 \mathrm{mg} .
$$

We also know that it takes 1600 years for m to decrease by half. Therefore:

$$
\begin{aligned}
(50 / 100) & =.5=e^{1600 A} \\
\ln (.5) & =1600 A \\
A & =\ln (.5) / 1600 .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
m & =C e^{A t} \\
& =100 e^{(\ln (.5) / 1600) t} \\
& =100\left(e^{\ln (.5)}\right)^{t / 1600} \\
& =100(.5)^{t / 1600},
\end{aligned}
$$

where t is in years and $m(t)$ is in mg.
(12b) When $t=1000$ years, and using the approximation given in the question,

$$
\begin{aligned}
m & =100(.5)^{1000 / 1600} \\
& =100(2)^{-10 / 16} \\
& \approx 100(.65) \\
& =65 \mathrm{mg} .
\end{aligned}
$$

13. The formula for arc length S of a curve defined by parametric equations $x(t)$ and $y(t)$ is:

$$
S=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

In this problem, $x(t)$ is given as

$$
\int_{0}^{t} \cos \left(\pi u^{2} / 2\right) d u
$$

and

$$
y(t)=\int_{0}^{t} \sin \left(\pi u^{2} / 2\right) d u
$$

Their derivatives are

$$
\begin{aligned}
x^{\prime}(t) & =\cos \left(\frac{\pi t^{2}}{2}\right) \\
y^{\prime}(t) & =\sin \left(\frac{\pi t^{2}}{2}\right)
\end{aligned}
$$

Substituting $x^{\prime}(t), y^{\prime}(t)$, and the appropriate limits into the formula for arc length results in:

$$
\begin{aligned}
S & =\int_{0}^{t_{0}} \sqrt{\cos ^{2}\left(\pi t^{2} / 2\right)+\sin ^{2}\left(\pi t^{2} / 2\right)} d t \\
& =\int_{0}^{t_{0}} d t \\
& =\left.t\right|_{0} ^{t_{0}} \\
& =t_{0}
\end{aligned}
$$

14. (14a) The Taylor series of a function $f(x)$ centered at $x=a$ is

$$
f(a)+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{(2)}(a)(x-a)^{2}}{2!}+\frac{f^{(3)}(a)(x-a)^{3}}{3!}+\frac{f^{(4)}(a)(x-a)^{4}}{4!}+\ldots
$$

The Taylor series of $\ln (1+x)$ centered at $x=a$ is then
$\ln (1+a)+\frac{(1+a)^{-1}(x-a)}{1!}+\frac{-(1+a)^{-2}(x-a)^{2}}{2!}+\frac{2(1+a)^{-3}(x-a)^{3}}{3!}+\frac{-(2)(3)(1+a)^{-4}(x-a)^{4}}{4!}+\ldots$
And the Taylor series of $\ln (1+x)$ centered at $a=0$ is therefore

$$
\begin{aligned}
\ln (1)+\frac{x}{1!}+\frac{-x^{2}}{2!}+\frac{2 x^{3}}{3!}+\frac{-(2)(3) x^{4}}{4!}+\ldots & =0+\frac{x}{1}+\frac{-x^{2}}{2}+\frac{x^{3}}{3}+\frac{-x^{4}}{4}+\ldots \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}
\end{aligned}
$$

(14b) Using the ratio test,

$$
|x|<\left|\frac{c_{n}}{c_{n+1}}\right|=\left|\frac{(-1)^{n+1} n}{(-1)^{n+2} n+1}\right|=\left|\frac{n}{n+1}\right| .
$$

Because n is the index of summation (an increasing integer), $n+1$ is always greater than n and therefore

$$
|x|<\left|\frac{n}{n+1}\right|<1
$$

Thus $|x|<1$ and the radius of convergence is $-1<x<1$.
(14c) $\ln (3 / 2)=\ln (1+.5)$ can be approximated by the first two non-zero terms of the Taylor series found in (a):

$$
\begin{aligned}
\ln (1+x) & \approx \frac{x}{1}+\frac{-x^{2}}{2} \\
& =.5-\frac{.25}{2} \\
& =\frac{3}{8}
\end{aligned}
$$

(14d) The upper bound of the error in (c)'s approximation is found using Taylor's inequality for an approximation of n terms:

$$
\left|R_{n}(x)\right| \leq M_{n} \frac{\left|x^{n+1}\right|}{(n+1)!},
$$

where $x=1 / 2$ and $n=2$. In addition,

$$
M_{n} \geq\left|f^{(n+1)}(x)\right| \Rightarrow M_{2} \geq \frac{2}{(1+x)^{3}}
$$

for all $|x| \leq 1 / 2$; the maximum of M_{2} in this range is for $x=-1 / 2$, which gives $M_{2}=16$. Putting these numbers into the above formula,

$$
\left|R_{n}(.5)\right| \leq 16 \frac{(.5)^{3}}{3!}=\frac{1}{3}
$$

15. We can prove the inequality by showing that the derivatives of the terms satisfy the inequality for $x>0$ and then by working backwards from there:

$$
d\left(\frac{x}{1+x^{2}}\right)=\frac{1}{1+x^{2}}-\frac{2 x^{2}}{\left(1+x^{2}\right)^{2}}, \quad d\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}, \quad d(x)=1
$$

$$
\begin{aligned}
\Rightarrow \frac{1}{1+x^{2}}-\frac{2 x^{2}}{\left(1+x^{2}\right)^{2}} & <\frac{1}{1+x^{2}}<1 \text { for all } x>0 \\
\int_{0}^{t}\left(\frac{1}{1+x^{2}}-\frac{2 x^{2}}{\left(1+x^{2}\right)^{2}}\right) d x & <\int_{0}^{t} \frac{1}{1+x^{2}} d x<\int_{0}^{t} 1 d x \text { for all } x>0 \\
\frac{t}{1+t^{2}} & <\tan ^{-1}(t)<t \text { for all } t>0 \\
\frac{x}{1+x^{2}} & <\tan ^{-1}(x)<x \text { for all } x>0
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

