MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 7: Continuation and Exam Review

Hyperbolic Sine and Cosine

Hyperbolic sine (pronounced "sinsh"):

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}
$$

Hyperbolic cosine (pronounced "cosh"):

$$
\begin{gathered}
\cosh (x)=\frac{e^{x}+e^{-x}}{2} \\
\frac{d}{d x} \sinh (x)=\frac{d}{d x}\left(\frac{e^{x}-e^{-x}}{2}\right)=\frac{e^{x}-\left(-e^{-x}\right)}{2}=\cosh (x)
\end{gathered}
$$

Likewise,

$$
\frac{d}{d x} \cosh (x)=\sinh (x)
$$

(Note that this is different from $\frac{d}{d x} \cos (x)$.)
Important identity:

$$
\cosh ^{2}(x)-\sinh ^{2}(x)=1
$$

Proof:

$$
\begin{aligned}
\cosh ^{2}(x)-\sinh ^{2}(x) & =\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-\left(\frac{e^{x}-e^{-x}}{2}\right)^{2} \\
\cosh ^{2}(x)-\sinh ^{2}(x) & =\frac{1}{4}\left(e^{2 x}+2 e^{x} e^{-x}+e^{-2 x}\right)-\frac{1}{4}\left(e^{2 x}-2+e^{-2 x}\right)=\frac{1}{4}(2+2)=1
\end{aligned}
$$

Why are these functions called "hyperbolic"?
Let $u=\cosh (x)$ and $v=\sinh (x)$, then

$$
u^{2}-v^{2}=1
$$

which is the equation of a hyperbola.
Regular trig functions are "circular" functions. If $u=\cos (x)$ and $v=\sin (x)$, then

$$
u^{2}+v^{2}=1
$$

which is the equation of a circle.

Exam 1 Review

General Differentiation Formulas

$$
\begin{aligned}
(u+v)^{\prime} & =u^{\prime}+v^{\prime} \\
(c u)^{\prime} & =c u^{\prime} \\
(u v)^{\prime} & =u^{\prime} v+u v^{\prime} \quad \text { (product rule) } \\
\left(\frac{u}{v}\right)^{\prime} & =\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \quad \text { (quotient rule) } \\
\frac{d}{d x} f(u(x)) & =f^{\prime}(u(x)) \cdot u^{\prime}(x) \quad \text { (chain rule) }
\end{aligned}
$$

You can remember the quotient rule by rewriting

$$
\left(\frac{u}{v}\right)^{\prime}=\left(u v^{-1}\right)^{\prime}
$$

and applying the product rule and chain rule.

Implicit differentiation

Let's say you want to find y^{\prime} from an equation like

$$
y^{3}+3 x y^{2}=8
$$

Instead of solving for y and then taking its derivative, just take $\frac{d}{d x}$ of the whole thing. In this example,

$$
\begin{aligned}
3 y^{2} y^{\prime}+6 x y y^{\prime}+3 y^{2} & =0 \\
\left(3 y^{2}+6 x y\right) y^{\prime} & =-3 y^{2} \\
y^{\prime} & =\frac{-3 y^{2}}{3 y^{2}+6 x y}
\end{aligned}
$$

Note that this formula for y^{\prime} involves both x and y. Implicit differentiation can be very useful for taking the derivatives of inverse functions.

For instance,

$$
y=\sin ^{-1} x \Rightarrow \sin y=x
$$

Implicit differentiation yields

$$
(\cos y) y^{\prime}=1
$$

and

$$
y^{\prime}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-x^{2}}}
$$

Specific differentiation formulas

You will be responsible for knowing formulas for the derivatives and how to deduce these formulas from previous information: $x^{n}, \sin ^{-1} x, \tan ^{-1} x, \sin x, \cos x, \tan x, \sec x, e^{x}, \ln x$.

For example, let's calculate $\frac{d}{d x} \sec x$:

$$
\frac{d}{d x} \sec x=\frac{d}{d x} \frac{1}{\cos x}=\frac{-(-\sin x)}{\cos ^{2} x}=\tan x \sec x
$$

You may be asked to find $\frac{d}{d x} \sin x$ or $\frac{d}{d x} \cos x$, using the following information:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sin (h)}{h} & =1 \\
\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h} & =0
\end{aligned}
$$

Remember the definition of the derivative:

$$
\frac{d}{d x} f(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Tying up a loose end

How to find $\frac{d}{d x} x^{r}$, where r is a real (but not necessarily rational) number? All we have done so far is the case of rational numbers, using implicit differentiation. We can do this two ways:

1st method: base e

$$
\begin{aligned}
x & =e^{\ln x} \\
x^{r} & =\left(e^{\ln x}\right)^{r}=e^{r \ln x} \\
\frac{d}{d x} x^{r} & =\frac{d}{d x} e^{r \ln x}=e^{r \ln x} \frac{d}{d x}(r \ln x)=e^{r \ln x} \frac{r}{x} \\
\frac{d}{d x} x^{r} & =x^{r}\left(\frac{r}{x}\right)=r x^{r-1}
\end{aligned}
$$

2nd method: logarithmic differentiation

$$
\begin{aligned}
(\ln f)^{\prime} & =\frac{f^{\prime}}{f} \\
f & =x^{r} \\
\ln f & =r \ln x \\
(\ln f)^{\prime} & =\frac{r}{x} \\
f^{\prime}=f(\ln f)^{\prime} & =x^{r}\left(\frac{r}{x}\right)=r x^{r-1}
\end{aligned}
$$

Finally, in the first lecture I promised you that you'd learn to differentiate anything- even something as complicated as

$$
\frac{d}{d x} e^{x \tan ^{-1} x}
$$

So let's do it!

$$
\frac{d}{d x} e^{u v}=e^{u v} \frac{d}{d x}(u v)=e^{u v}\left(u^{\prime} v+u v^{\prime}\right)
$$

Substituting,

$$
\frac{d}{d x} e^{x \tan ^{-1} x}=e^{x \tan ^{-1} x}\left(\tan ^{-1} x+x\left(\frac{1}{1+x^{2}}\right)\right)
$$

