MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 6: Exponential and Log, Logarithmic Differentiation, Hyperbolic Functions

Taking the derivatives of exponentials and logarithms

Background

We always assume the base, a, is greater than 1 .

$$
\begin{aligned}
a^{0} & =1 ; \quad a^{1}=a ; \quad a^{2}=a \cdot a ; \quad \ldots \\
a^{x_{1}+x_{2}} & =a^{x_{1}} a^{x_{2}} \\
\left(a^{x_{1}}\right)^{x_{2}} & =a^{x_{1} x_{2}} \\
a^{\frac{p}{q}} & =\sqrt[q]{a^{p}} \quad(\text { where } p \text { and } q \text { are integers })
\end{aligned}
$$

To define a^{r} for real numbers r, fill in by continuity.
Today's main task: find $\frac{d}{d x} a^{x}$
We can write

$$
\frac{d}{d x} a^{x}=\lim _{\Delta x \rightarrow 0} \frac{a^{x+\Delta x}-a^{x}}{\Delta x}
$$

We can factor out the a^{x} :

$$
\lim _{\Delta x \rightarrow 0} \frac{a^{x+\Delta x}-a^{x}}{\Delta x}=\lim _{\Delta x \rightarrow 0} a^{x} \frac{a^{\Delta x}-1}{\Delta x}=a^{x} \lim _{\Delta x \rightarrow 0} \frac{a^{\Delta x}-1}{\Delta x}
$$

Let's call

$$
M(a) \equiv \lim _{\Delta x \rightarrow 0} \frac{a^{\Delta x}-1}{\Delta x}
$$

We don't yet know what $M(a)$ is, but we can say

$$
\frac{d}{d x} a^{x}=M(a) a^{x}
$$

Here are two ways to describe $M(a)$:

1. Analytically $M(a)=\frac{d}{d x} a^{x}$ at $x=0$.

$$
\text { Indeed, } M(a)=\lim _{\Delta x \rightarrow 0} \frac{a^{0+\Delta x}-a^{0}}{\Delta x}=\left.\frac{d}{d x} a^{x}\right|_{x=0}
$$

Figure 1: Geometric definition of $M(a)$
2. Geometrically, $M(a)$ is the slope of the graph $y=a^{x}$ at $x=0$.

The trick to figuring out what $M(a)$ is is to beg the question and define e as the number such that $M(e)=1$. Now can we be sure there is such a number e ? First notice that as the base a increases, the graph a^{x} gets steeper. Next, we will estimate the slope $M(a)$ for $a=2$ and $a=4$ geometrically. Look at the graph of 2^{x} in Fig. 2 . The secant line from $(0,1)$ to $(1,2)$ of the graph $y=2^{x}$ has slope 1. Therefore, the slope of $y=2^{x}$ at $x=0$ is less: $M(2)<1$ (see Fig. 2).

Next, look at the graph of 4^{x} in Fig. 3. The secant line from $\left(-\frac{1}{2}, \frac{1}{2}\right)$ to $(1,0)$ on the graph of $y=4^{x}$ has slope 1. Therefore, the slope of $y=4^{x}$ at $x=0$ is greater than $M(4)>1$ (see Fig. 3).

Somewhere in between 2 and 4 there is a base whose slope at $x=0$ is 1 .

Figure 2: Slope $M(2)<1$

Figure 3: Slope $M(4)>1$

Thus we can define e to be the unique number such that

$$
M(e)=1
$$

or, to put it another way,

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

or, to put it still another way,

$$
\frac{d}{d x}\left(e^{x}\right)=1 \quad \text { at } x=0
$$

What is $\frac{d}{d x}\left(e^{x}\right)$? We just defined $M(e)=1$, and $\frac{d}{d x}\left(e^{x}\right)=M(e) e^{x}$. So

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Natural \log (inverse function of e^{x})

To understand $M(a)$ better, we study the natural \log function $\ln (x)$. This function is defined as follows:

$$
\begin{equation*}
\text { If } y=e^{x}, \text { then } \ln (y)=x \tag{or}
\end{equation*}
$$

$$
\text { If } w=\ln (x), \text { then } e^{x}=w
$$

Note that e^{x} is always positive, even if x is negative.
Recall that $\ln (1)=0 ; \quad \ln (x)<0$ for $0<x<1 ; \quad \ln (x)>0$ for $x>1$. Recall also that

$$
\ln \left(x_{1} x_{2}\right)=\ln x_{1}+\ln x_{2}
$$

Let us use implicit differentiation to find $\frac{d}{d x} \ln (x) . \quad w=\ln (x)$. We want to find $\frac{d w}{d x}$.

$$
\begin{aligned}
e^{w} & =x \\
\frac{d}{d x}\left(e^{w}\right) & =\frac{d}{d x}(x) \\
\frac{d}{d w}\left(e^{w}\right) \frac{d w}{d x} & =1 \\
e^{w} \frac{d w}{d x} & =1 \\
\frac{d w}{d x} & =\frac{1}{e^{w}}=\frac{1}{x}
\end{aligned}
$$

$$
\frac{d}{d x}(\ln (x))=\frac{1}{x}
$$

Finally, what about $\frac{d}{d x}\left(a^{x}\right)$?

There are two methods we can use:

Method 1: Write base e and use chain rule.

Rewrite a as $e^{\ln (a)}$. Then,

$$
a^{x}=\left(e^{\ln (a)}\right)^{x}=e^{x \ln (a)}
$$

That looks like it might be tricky to differentiate. Let's work up to it:

$$
\begin{array}{ccc}
\frac{d}{d x} e^{x} & = & e^{x} \\
& \text { and by the chain rule, } & \\
\frac{d}{d x} e^{3 x} & = & 3 e^{3 x}
\end{array}
$$

Remember, $\ln (a)$ is just a constant number- not a variable! Therefore,

$$
\begin{array}{cl}
\frac{d}{d x} e^{(\ln a) x} & =\quad(\ln a) e^{(\ln a) x} \\
\text { or } \\
\frac{d}{d x}\left(a^{x}\right) & =\ln (a) \cdot a^{x}
\end{array}
$$

Recall that

$$
\frac{d}{d x}\left(a^{x}\right)=M(a) \cdot a^{x}
$$

So now we know the value of $M(a): \quad M(a)=\ln (a)$.
Even if we insist on starting with another base, like 10, the natural logarithm appears:

$$
\frac{d}{d x} 10^{x}=(\ln 10) 10^{x}
$$

The base e may seem strange at first. But, it comes up everywhere. After a while, you'll learn to appreciate just how natural it is.

Method 2: Logarithmic Differentiation.

The idea is to find $\frac{d}{d x} f(x)$ by finding $\frac{d}{d x} \ln (f(x))$ instead. Sometimes this approach is easier. Let $u=f(x)$.

$$
\frac{d}{d x} \ln (u)=\frac{d \ln (u)}{d u} \frac{d u}{d x}=\frac{1}{u}\left(\frac{d u}{d x}\right)
$$

Since $u=f$ and $\frac{d u}{d x}=f^{\prime}$, we can also write

$$
(\ln f)^{\prime}=\frac{f^{\prime}}{f} \quad \text { or } \quad f^{\prime}=f(\ln f)^{\prime}
$$

Apply this to $f(x)=a^{x}$.

$$
\ln f(x)=x \ln a \Longrightarrow \frac{d}{d x} \ln (f)=\frac{d}{d x} \ln \left(a^{x}\right)=\frac{d}{d x}(x \ln (a))=\ln (a)
$$

(Remember, $\ln (a)$ is a constant, not a variable.) Hence,

$$
\frac{d}{d x}(\ln f)=\ln (a) \Longrightarrow \frac{f^{\prime}}{f}=\ln (a) \Longrightarrow f^{\prime}=\ln (a) f \Longrightarrow \frac{d}{d x} a^{x}=(\ln a) a^{x}
$$

Example 1. $\frac{d}{d x}\left(x^{x}\right)=$?
With variable ("moving") exponents, you should use either base e or logarithmic differentiation. In this example, we will use the latter.

$$
\begin{aligned}
f & =x^{x} \\
\ln f & =x \ln x \\
(\ln f)^{\prime} & =1 \cdot(\ln x)+x\left(\frac{1}{x}\right)=\ln (x)+1 \\
(\ln f)^{\prime} & =\frac{f^{\prime}}{f}
\end{aligned}
$$

Therefore,

$$
f^{\prime}=f(\ln f)^{\prime}=x^{x}(\ln (x)+1)
$$

If you wanted to solve this using the base e approach, you would say $f=e^{x \ln x}$ and differentiate it using the chain rule. It gets you the same answer, but requires a little more writing.

Example 2. Use logs to evaluate $\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}$.
Because the exponent k changes, it is better to find the limit of the logarithm.

$$
\lim _{k \rightarrow \infty} \ln \left[\left(1+\frac{1}{k}\right)^{k}\right]
$$

We know that

$$
\ln \left[\left(1+\frac{1}{k}\right)^{k}\right]=k \ln \left(1+\frac{1}{k}\right)
$$

This expression has two competing parts, which balance: $k \rightarrow \infty$ while $\ln \left(1+\frac{1}{k}\right) \rightarrow 0$.

$$
\ln \left[\left(1+\frac{1}{k}\right)^{k}\right]=k \ln \left(1+\frac{1}{k}\right)=\frac{\ln \left(1+\frac{1}{k}\right)}{\frac{1}{k}}=\frac{\ln (1+h)}{h} \quad\left(\text { with } h=\frac{1}{k}\right)
$$

Next, because $\ln 1=0$

$$
\ln \left[\left(1+\frac{1}{k}\right)^{k}\right]=\frac{\ln (1+h)-\ln (1)}{h}
$$

Take the limit: $h=\frac{1}{k} \rightarrow 0$ as $k \rightarrow \infty$, so that

$$
\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln (1)}{h}=\left.\frac{d}{d x} \ln (x)\right|_{x=1}=1
$$

In all,

$$
\lim _{k \rightarrow \infty} \ln \left(1+\frac{1}{k}\right)^{k}=1
$$

We have just found that $a_{k}=\ln \left[\left(1+\frac{1}{k}\right)^{k}\right] \rightarrow 1$ as $k \rightarrow \infty$.
If $b_{k}=\left(1+\frac{1}{k}\right)^{k}$, then $b_{k}=e^{a_{k}} \rightarrow e^{1}$ as $k \rightarrow \infty$. In other words, we have evaluated the limit we wanted:

$$
\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}=e
$$

Remark 1. We never figured out what the exact numerical value of e was. Now we can use this limit formula; $k=10$ gives a pretty good approximation to the actual value of e.
Remark 2. Logs are used in all sciences and even in finance. Think about the stock market. If I say the market fell 50 points today, you'd need to know whether the market average before the drop was 300 points or 10,000 . In other words, you care about the percent change, or the ratio of the change to the starting value:

$$
\frac{f^{\prime}(t)}{f(t)}=\frac{d}{d t} \ln (f(t))
$$

