MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 5 Implicit Differentiation and Inverses

Implicit Differentiation

Example 1. $\quad \frac{d}{d x}\left(x^{a}\right)=a x^{a-1}$.
We proved this by an explicit computation for $a=0,1,2, \ldots$. From this, we also got the formula for $a=-1,-2, \ldots$ Let us try to extend this formula to cover rational numbers, as well:

$$
a=\frac{m}{n} ; \quad y=x^{\frac{m}{n}} \quad \text { where } m \text { and } n \text { are integers. }
$$

We want to compute $\frac{d y}{d x}$. We can say $y^{n}=x^{m} \quad$ so $\quad n y^{n-1} \frac{d y}{d x}=m x^{m-1}$. Solve for $\frac{d y}{d x}$:

$$
\frac{d y}{d x}=\frac{m}{n} \frac{x^{m-1}}{y^{n-1}}
$$

We know that $y=x^{\left(\frac{m}{n}\right)}$ is a function of x.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{m}{n}\left(\frac{x^{m-1}}{y^{n-1}}\right) \\
& =\frac{m}{n}\left(\frac{x^{m-1}}{\left(x^{m / n}\right)^{n-1}}\right) \\
& =\frac{m}{n} \frac{x^{m-1}}{x^{m(n-1) / n}} \\
& =\frac{m}{n} x^{(m-1)-\frac{m(n-1)}{n}} \\
& =\frac{m}{n} x^{\frac{n(m-1)-m(n-1)}{n}} \\
& =\frac{m}{n} x^{\frac{n m-n-n m+m}{n}} \\
& =\frac{m}{n} x^{\frac{m}{n}-\frac{n}{n}} \\
\text { So, } \frac{d y}{d x} & =\frac{m}{n} x^{\frac{m}{n}-1}
\end{aligned}
$$

This is the same answer as we were hoping to get!
Example 2. Equation of a circle with a radius of 1: $x^{2}+y^{2}=1$ which we can write as $y^{2}=1-x^{2}$. So $y= \pm \sqrt{1-x^{2}}$. Let us look at the positive case:

$$
\begin{aligned}
y & =+\sqrt{1-x^{2}}=\left(1-x^{2}\right)^{\frac{1}{2}} \\
\frac{d y}{d x} & =\left(\frac{1}{2}\right)\left(1-x^{2}\right)^{\frac{-1}{2}}(-2 x)=\frac{-x}{\sqrt{1-x^{2}}}=\frac{-x}{y}
\end{aligned}
$$

Now, let's do the same thing, using implicit differentiation.

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
\frac{d}{d x}\left(x^{2}+y^{2}\right) & =\frac{d}{d x}(1)=0 \\
\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{2}\right) & =0
\end{aligned}
$$

Applying chain rule in the second term,

$$
\begin{aligned}
2 x+2 y \frac{d y}{d x} & =0 \\
2 y \frac{d y}{d x} & =-2 x \\
\frac{d y}{d x} & =\frac{-x}{y}
\end{aligned}
$$

Same answer!

Example 3. $y^{3}+x y^{2}+1=0$. In this case, it's not easy to solve for y as a function of x. Instead, we use implicit differentiation to find $\frac{d y}{d x}$.

$$
3 y^{2} \frac{d y}{d x}+y^{2}+2 x y \frac{d y}{d x}=0
$$

We can now solve for $\frac{d y}{d x}$ in terms of y and x.

$$
\begin{aligned}
\frac{d y}{d x}\left(3 y^{2}+2 x y\right) & =-y^{2} \\
\frac{d y}{d x} & =\frac{-y^{2}}{3 y^{2}+2 x y}
\end{aligned}
$$

Inverse Functions

If $y=f(x)$ and $g(y)=x$, we call g the inverse function of f, f^{-1} :

$$
x=g(y)=f^{-1}(y)
$$

Now, let us use implicit differentiation to find the derivative of the inverse function.

$$
\begin{aligned}
y & =f(x) \\
f^{-1}(y) & =x \\
\frac{d}{d x}\left(f^{-1}(y)\right) & =\frac{d}{d x}(x)=1
\end{aligned}
$$

By the chain rule:

$$
\begin{aligned}
\frac{d}{d y}\left(f^{-1}(y)\right) \frac{d y}{d x} & =1 \\
\text { and } & \\
\frac{d}{d y}\left(f^{-1}(y)\right) & =\frac{1}{\frac{d y}{d x}}
\end{aligned}
$$

So, implicit differentiation makes it possible to find the derivative of the inverse function.
Example. $y=\arctan (x)$

$$
\begin{aligned}
\tan y & =x \\
\frac{d}{d x}[\tan (y)] & =\frac{d x}{d x}=1 \\
\frac{d}{d y}[\tan (y)] \frac{d y}{d x} & =1 \\
\left(\frac{1}{\cos ^{2}(y)}\right) \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\cos ^{2}(y)=\cos ^{2}(\arctan (x))
\end{aligned}
$$

This form is messy. Let us use some geometry to simplify it.

Figure 1: Triangle with angles and lengths corresponding to those in the example illustrating differentiation using the inverse function arctan

In this triangle, $\tan (y)=x$ so

$$
\arctan (x)=y
$$

The Pythagorian theorem tells us the length of the hypotenuse:

$$
h=\sqrt{1+x^{2}}
$$

From this, we can find

$$
\cos (y)=\frac{1}{\sqrt{1+x^{2}}}
$$

From this, we get

$$
\cos ^{2}(y)=\left(\frac{1}{\sqrt{1+x^{2}}}\right)^{2}=\frac{1}{1+x^{2}}
$$

So,

$$
\frac{d y}{d x}=\frac{1}{1+x^{2}}
$$

In other words,

$$
\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}
$$

Graphing an Inverse Function.

Suppose $y=f(x)$ and $g(y)=f^{-1}(y)=x$. To graph g and f together we need to write g as a function of the variable x. If $g(x)=y$, then $x=f(y)$, and what we have done is to trade the variables x and y. This is illustrated in Fig. 2

$f^{-1}(f(x))=x$	$f^{-1} \circ f(x)=x$
$f\left(f^{-1}(x)\right)=x$	$f \circ f^{-1}(x)=x$

Figure 2: You can think about f^{-1} as the graph of f reflected about the line $y=x$

