MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 15: Differentials and Antiderivatives

Differentials

New notation:

$$
d y=f^{\prime}(x) d x \quad(y=f(x))
$$

Both $d y$ and $f^{\prime}(x) d x$ are called differentials. You can think of

$$
\frac{d y}{d x}=f^{\prime}(x)
$$

as a quotient of differentials. One way this is used is for linear approximations.

$$
\frac{\Delta y}{\Delta x} \approx \frac{d y}{d x}
$$

Example 1. Approximate $65^{1 / 3}$

Method 1 (review of linear approximation method)

$$
\begin{aligned}
f(x) & =x^{1 / 3} \\
f^{\prime}(x) & =\frac{1}{3} x^{-2 / 3} \\
f(x) & \approx f(a)+f^{\prime}(a)(x-a) \\
x^{1 / 3} & \approx a^{1 / 3}+\frac{1}{3} a^{-2 / 3}(x-a)
\end{aligned}
$$

A good base point is $a=64$, because $64^{1 / 3}=4$.
Let $x=65$.

$$
65^{1 / 3}=64^{1 / 3}+\frac{1}{3} 64^{-2 / 3}(65-64)=4+\frac{1}{3}\left(\frac{1}{16}\right)(1)=4+\frac{1}{48} \approx 4.02
$$

Similarly,

$$
(64.1)^{1 / 3} \approx 4+\frac{1}{480}
$$

Method 2 (review)

$$
65^{1 / 3}=(64+1)^{1 / 3}=\left[64\left(1+\frac{1}{64}\right)\right]^{1 / 3}=64^{1 / 3}\left[1+\frac{1}{64}\right]^{1 / 3}=4\left[1+\frac{1}{64}\right]^{1 / 3}
$$

Next, use the approximation $(1+x)^{r} \approx 1+r x$ with $r=\frac{1}{3}$ and $x=\frac{1}{64}$.

$$
65^{1 / 3} \approx 4\left(1+\frac{1}{3}\left(\frac{1}{64}\right)\right)=4+\frac{1}{48}
$$

This is the same result that we got from Method 1.

Method 3 (with differential notation)

$$
\begin{aligned}
y & =\left.x^{1 / 3}\right|_{x=64}=4 \\
d y & =\left.\frac{1}{3} x^{-2 / 3} d x\right|_{x=64}=\frac{1}{3}\left(\frac{1}{16}\right) d x=\frac{1}{48} d x
\end{aligned}
$$

We want $d x=1$, since $(x+d x)=65 . d y=\frac{1}{48}$ when $d x=1$.

$$
(65)^{1 / 3}=4+\frac{1}{48}
$$

What underlies all three of these methods is

$$
\begin{aligned}
y & =x^{1 / 3} \\
\frac{d y}{d x} & =\left.\frac{1}{3} x^{-2 / 3}\right|_{x=64}
\end{aligned}
$$

Anti-derivatives

$F(x)=\int f(x) d x$ means that F is the antiderivative of f.
Other ways of saying this are:

$$
F^{\prime}(x)=f(x) \quad \text { or, } \quad d F=f(x) d x
$$

Examples:

1. $\int \sin x d x=-\cos x+c$ where c is any constant.
2. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$ for $n \neq-1$.
3. $\int \frac{d x}{x}=\ln |x|+c \quad$ (This takes care of the exceptional case $n=-1$ in 2.)
4. $\int \sec ^{2} x d x=\tan x+c$
5. $\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+c\left(\right.$ where $\sin ^{-1} x$ denotes "inverse sin" or \arcsin, and not $\frac{1}{\sin x}$)
6. $\int \frac{d x}{1+x^{2}}=\tan ^{-1}(x)+c$

Proof of Property 2: The absolute value $|x|$ gives the correct answer for both positive and negative x . We will double check this now for the case $x<0$:

$$
\begin{aligned}
\ln |x| & =\ln (-x) \\
\frac{d}{d x} \ln (-x) & =\left(\frac{d}{d u} \ln (u)\right) \frac{d u}{d x} \quad \text { where } u=-x \\
\frac{d}{d x} \ln (-x) & =\frac{1}{u}(-1)=\frac{1}{-x}(-1)=\frac{1}{x}
\end{aligned}
$$

Uniqueness of the antiderivative up to an additive constant.

If $F^{\prime}(x)=f(x)$, and $G^{\prime}(x)=f(x)$, then $G(x)=F(x)+c$ for some constant factor c.
Proof:

$$
(G-F)^{\prime}=f-f=0
$$

Recall that we proved as a corollary of the Mean Value Theorem that if a function has a derivative zero then it is constant. Hence $G(x)-F(x)=c$ (for some constant c). That is, $G(x)=F(x)+c$.

Method of substitution.

Example 1. $\int x^{3}\left(x^{4}+2\right)^{5} d x$
Substitution:

$$
u=x^{4}+2, \quad d u=4 x^{3} d x, \quad\left(x^{4}+2\right)^{5}=u^{5}, \quad x^{3} d x=\frac{1}{4} d u
$$

Hence,

$$
\int x^{3}\left(x^{4}+2\right)^{5} d x=\frac{1}{4} \int u^{5} d u=\frac{u^{6}}{4(6)}=\frac{u^{6}}{24}+c=\frac{1}{24}\left(x^{4}+2\right)^{6}+c
$$

Example 2. $\int \frac{x}{\sqrt{1+x^{2}}} d x$
Another way to find an anti-derivative is "advanced guessing." First write

$$
\int \frac{x}{\sqrt{1+x^{2}}} d x=\int x\left(1+x^{2}\right)^{-1 / 2} d x
$$

Guess: $\left(1+x^{2}\right)^{1 / 2}$. Check this.

$$
\frac{d}{d x}\left(1+x^{2}\right)^{1 / 2}=\frac{1}{2}\left(1+x^{2}\right)^{-1 / 2}(2 x)=x\left(1+x^{2}\right)^{-1 / 2}
$$

Therefore,

$$
\int x\left(1+x^{2}\right)^{-1 / 2} d x=\left(1+x^{2}\right)^{1 / 2}+c
$$

Example 3. $\int e^{6 x} d x$
Guess: $e^{6 x}$. Check this:

$$
\frac{d}{d x} e^{6 x}=6 e^{6 x}
$$

Therefore,

$$
\int e^{6 x} d x=\frac{1}{6} e^{6 x}+c
$$

Example 4. $\int x e^{-x^{2}} d x$
Guess: $e^{-x^{2}}$ Again, take the derivative to check:

$$
\frac{d}{d x} e^{-x^{2}}=(-2 x)\left(e^{-x^{2}}\right)
$$

Therefore,

$$
\int x e^{-x^{2}} d x=-\frac{1}{2} e^{-x^{2}}+c
$$

Example 5. $\int \sin x \cos x d x=\frac{1}{2} \sin ^{2} x+c$
Another, equally acceptable answer is

$$
\int \sin x \cos x d x=-\frac{1}{2} \cos ^{2} x+c
$$

This seems like a contradiction, so let's check our answers:

$$
\frac{d}{d x} \sin ^{2} x=(2 \sin x)(\cos x)
$$

and

$$
\frac{d}{d x} \cos ^{2} x=(2 \cos x)(-\sin x)
$$

So both of these are correct. Here's how we resolve this apparent paradox: the difference between the two answers is a constant.

$$
\frac{1}{2} \sin ^{2} x-\left(-\frac{1}{2} \cos ^{2} x\right)=\frac{1}{2}\left(\sin ^{2} x+\cos ^{2} x\right)=\frac{1}{2}
$$

So,

$$
\frac{1}{2} \sin ^{2} x-\frac{1}{2}=\frac{1}{2}\left(\sin ^{2} x-1\right)=\frac{1}{2}\left(-\cos ^{2} x\right)=-\frac{1}{2} \cos ^{2} x
$$

The two answers are, in fact, equivalent. The constant c is shifted by $\frac{1}{2}$ from one answer to the other.
Example 6. $\int \frac{d x}{x \ln x} \quad$ (We will assume $x>0$.)
Let $u=\ln x$. This means $d u=\frac{1}{x} d x$. Substitute these into the integral to get

$$
\int \frac{d x}{x \ln x}=\int \frac{1}{u} d u=\ln u+c=\ln (\ln (x))+c
$$

